|
||||
|
ГЛАВА ШЕСТАЯ ЭТАПЫ ВЕЛИКОГО НАСТУПЛЕНИЯ РАЗВЕДКА В ИОНОСФЕРУ Составная ракета «Фау-2» как ракета-носитель, первая ступень, и «Вак Корпораль» как вторая ступень поднялись на высоту 402 километра над земной поверхностью. Известен случай, когда вторая ступень ракеты достигла высоты 480 километров. Много это или мало? На первый взгляд, это очень мало. Ведь даже для того, чтобы долететь до Луны, надо проделать путь, почти в 800 раз больший. Подпрыгнув, человек больше приближается к вершине Ай-Петри, чем наша ракета к Луне. А маршруты на Марс и Венеру вообще почти несоизмеримы с таким прыжком. Но, говорят, первый шаг самый трудный. Кроме того, если разобраться, этот шаг в 400 километров отнюдь не является 1/1000 пути человека к Луне. С энергетической точки зрения, ракета, способная подняться на высоту 400 километров, уже на 1/9 — космическая ракета. Она развивает 1/9энергии, необходимой для того, чтобы превратить тело в искусственный спутник Земли. С точки зрения развиваемой скорости, эта ракета является на 1/3 космической ракетой. Она развивает скорость несколько меньше 2,5 километра в секунду. А для того чтобы тело стало спутником Земли на высоте 300 километров, ему надо сообщить скорость в 7,732 километра в секунду. Как видим, прыжок на 400–500 километров, с точки зрения инженеров, — не такая уж ничтожная вещь. Новое в технике никогда не рождается сразу. Много ли груза мог возить паровоз Черепановых? 3,2 тонны — 1/20 груза, вмещающегося в один современный вагон! Быстро ли ездил первый паровоз Стефенсона? Когда он на испытаниях прошел отрезок пути со скоростью 22 километра в час, зрители бросали в небо шапки и кричали: «Летит, как стрела». Сегодня же электровоз легко тянет состав с «авиационной» скоростью — свыше 100 километров в час! А рекордная скорость пробега по железной дороге превосходит 330 километров в час. Но кто посмеет сказать, что без работ Стефенсона и Черепановых, без их примитивных паровозов, могли бы появиться современные локомотивы? Их машины — очередной неизбежный этап развития техники, далеко превзойденный нами сегодня. — Мы живем накануне космического полета, — сказал советский ученый, которому астронавтика обязана многими смелыми идеями, — А. А. Штернфельд. Будем же смотреть и на нашу ракету, «подпрыгнувшую» на высоту 480 километров, как на первую разведчицу большого пути к звездам, пути, на который уже неотвратимо ступило человечество. Тем более, что эти полеты действительно преследуют не чисто спортивные цели, а используются учеными для расширения наших знаний о верхних слоях атмосферы, о космическом пространстве. Еще 15 лет назад жидкостная ракета, достигшая сегодня предельных границ атмосферы и фактически выглянувшая уже в космическое пространство, не могла подняться и на несколько километров от Земли. Ведь она родилась только в 1930 году, когда советский инженер Ф. А. Цандер построил и испытал первые модели реактивного двигателя, работающего на жидком горючем. Исследование атмосферы поэтому в те годы вели с помощью стратостатов и шаров-зондов.
Максимальная высота, достигнутая стратостатом, составляла 22 тыс. метров. На такую высоту поднялся в 1934 году советский стратостат «Осоавиахим». В 1935 году американский стратостат «Эксплорер-2» превзошел рекорд советского стратостата на 66 метров. Много выше поднимаются шары-зонды. Рекордная высота, достигнутая этим способом, равна почти 44 километрам. Сведения о вышележащих слоях атмосферы удавалось получить только, наблюдая полярные сияния, вспышки метеоров, движение серебристых облаков, отражение звуковых и радиоволн. Ракета позволила поднять хрупкие приборы ученых на высоту, вдесятеро большую, и принесла массу новых сведений о самых предельных далях ионосферы. В настоящее время мы уже знаем температуры различных слоев атмосферы, распределение давлений по высоте, скорости и направления ветра на различных расстояниях от Земли, степень ионизации, химический состав газов. Некоторые сведения из принесенных ракетой оказались совершенно неожиданными, в корне изменили наши, основывающиеся на теоретических данных, предположения, другие — подтвердили уже существующие теории. Так подтвердилась догадка, что химический состав атмосферы, вплоть до предельных исследованных нами слоев, остается почти тем же самым, что и на поверхности Земли. А по некоторым теоретическим расчетам можно было предполагать «слоистое» строение атмосферы: на больших высотах преобладание легких газов — водорода и гелия, как в приземных слоях преобладают азот и кислород. Неожиданной оказалась и чрезвычайно высокая температура верхних слоев атмосферы, достигающая на высоте 200 километров 700°. Конечно, воздух, даже при этой высокой температуре, там не может обжечь, он не сможет даже нагреть предмет, оказавшийся на этой высоте. Атмосфера там уже слишком разрежена, и понятие температуры имеет не совсем привычный нам смысл. Этим словом определяется средняя скорость движения молекул. Неожиданностью было для ученых и существование на большой высоте сильных, имеющих постоянное направление воздушных течений. Высотная жидкостная ракета родилась в дни второй мировой войны. Огненные линии фронтов опоясывали Европу и Азию. В глухой тайне, в тишине засекреченных специальных конструкторских бюро светлую идею гениального русского ученого К. Э. Циолковского гитлеровские инженеры спешно приспосабливали для целей убийства. Приспособили. На пустыре, огороженном со всех сторон несколькими рядами ржавой колючей проволоки, встало вершинное создание человеческой мысли, основывающееся на трудах, идеях и выводах нескольких поколений ученых многих народов. В красивом сигарообразном корпусе был скрыт двигатель в полмиллиона лошадиных сил, способный бросить ракету на расстояние нескольких сотен километров. Это было чудо техники, ее величайшее достижение. Но оно сразу же было опозорено преступлением, как все, к чему прикасалась коричневая рука фашизма. Не умные самодействующие приборы, а желтозеленая тупая масса тола — спящая смерть — была впрессована в головной части ракеты. И не великие научные открытия, двигающие вперед человечество по пути прогресса, а губительный взрыв в густонаселенном квартале Лондона принес полет первой высотной жидкостной ракеты. Кончилась война, и эта ракета стала оружием науки. Не спресованную в желтом камне смерть, а приборы для исследования космических лучей подняла она в заоблачные выси ионосферы. С ее помощью производились и взрывы. Но это были укрощенные взрывы гранат, поднятых в те области атмосферы, где мы наблюдаем светящиеся следы метеоров. Ученые хотели искусственно воспроизвести это явление природы, моделировать болиды, по своему желанию создать звездный дождь. Этот опыт не удался, искусственного звездного дождя не получилось. Видимо, скорость, которую удалось при взрыве гранаты сообщить осколкам ее, была слишком мала по сравнению со скоростью метеоров. А может быть, дело в другом. Падение метеора, свечение следа, оставленного им, — еще очень мало изученные явления. Возможно, в образовании этого следа существенную роль играет, как считает В. Ф. Соляник, потенциальный электрический заряд космического тела, влетающего в нашу атмосферу. Электрический разряд тела в разреженных слоях атмосферы и вызывает ионизацию и свечение близлежащего воздуха, подобно тому как электрический разряд заставляет светиться разреженные газы в газосветных трубках. Скорее же всего светящийся след метеора вызывается совокупностью нескольких причин. Зато блестяще удался другой опыт — определение направления воздушных течений. На ракете установили аппаратуру, выбрасывающую на определенной высоте небольшие пылевые облака. Эта пыль была такая мелкая, что не сразу осела, несмотря на чрезвычайно разреженную атмосферу, падая через которую, пушинка вряд ли отстала бы от свинцового шарика. Облака этой пыли, освещенные Солнцем и поэтому хорошо видимые с помощью приборов с Земли, подхватывались и уносились воздушными течениями, о существовании которых люди знали очень мало. Особое внимание при исследовании ионосферы обращали ученые на ее электрическое строение: концентрацию ионов газов, распределение слоев ионизации и т. д. Это и понятно: ведь от этих слоев зависит качество нашей дальней радиосвязи. Разве не представляло интереса «потрогать» тот «потолок», ударяясь о который отражаются радиоволны обратно на Землю?! Немало и других исследований, представляющих интерес для специалистов, провели и проведут еще ученые с помощью ракет в самых высоких слоях атмосферы. Самых высоких? Но ведь следы атмосферы наблюдаются до высоты около 1000 километров! Верно. И исследование этих областей явится очередной задачей, которую поставят перед высотной ракетой. Жидкостная ракета поможет ученым открыть все тайны атмосферы, узнать не только примыкающую к Земле часть ее, но исследовать все ее слои, все ее участки. В ближайшем будущем туда, к верхним границам атмосферы, отправится в ракете и человек. Есть целый ряд исследований, которые нельзя доверить приборам и которые человек должен выполнить сам. Вот с этой целью и совершит человек полет на высотной ракете.
В 10 000 РАЗ БЫСТРЕЕ Необъятна наша родная страна! На северных островах ее и побережьях стоят трескучие морозы, в меховые шубы кутаются жители, и северное сияние полощет над ними своими цветными лентами. А в это же время на юге греет жаркое субтропическое солнце, цветут вишни, и ребятишки из колхозного детского сада в одних трусиках гоняются с сачками за яркими, похожими на цветы, бабочками. Стальные нити железных дорог, асфальтовые ленты шоссе, незримые трассы воздушных пассажирских линий соединяют области и города нашей Родины. Самыми различными средствами сообщения можно воспользоваться для того, чтобы посетить тот или иной город, побывать в том или ином районе. А ведь совсем недавно всех этих средств сообщения по существу не было. Едва прошло пять десятков лет с первых полетов самолетов. Всего на несколько десятков лет старше автомобиль. Немногим более 125 лет насчитывает история железнодорожных сообщений. А до этого все путешествия совершались или на лошадях, или пешком. Сколько же времени понадобилось бы для того, чтобы добраться с помощью разнообразных видов транспорта от Москвы до Владивостока? Пешком, делая в день по 30–40 километров, без выходных и отпусков, на это придется затратить 250–300 дней. Практически же вряд ли удастся совершить этот путь и за год. Некоторые высокопоставленные чиновники, направлявшиеся царским правительством в Сибирь, до места назначения — в Якутск, Иркутск или Владивосток на лошадях, и то ехали больше года. Но при нормальной езде на лошадях, меняя их по пути и делая по 150 километров в сутки, путешествие до Владивостока заняло бы свыше 2 месяцев. Да и то при условии, что нигде не придется ждать лошадей, дороги будут хорошие, не будет ни аварий, ни задержек в пути. Поезд из Москвы до Владивостока идет около 10 суток. Это уже в 30 раз быстрее, чем пешком. Еще сокращает время на путешествие из Москвы во Владивосток, как бы скрадывает это гигантское расстояние, самолет. Всего 30 часов полета — и вместо подмосковных садов и рощ вы увидите бескрайний Тихий океан, бьющий о берег серосвинцовыми, покрытыми по гребешкам белой пеной, волнами. Но ведь и 30 часов не так уж мало. А если еще учесть промежуточные посадки для заправки самолетов и отдыха пассажиров, возможные задержки изза нелётной погоды, окажется, что и добрых двое суток придется пробыть в пути от Москвы до Владивостока. А как было бы удобно, если бы можно было сократить это время до 1,5–2 часов. Ведь как мы ни стараемся заниматься в пути, в железнодорожном ли вагоне, в пассажирской ли каюте самолета, каким-нибудь делом — чтением книги, изучением иностранного языка, — все равно время получается наполовину потерянным. А ведь каждую минуту жизни надо стараться использовать как только можно полнее. Но такая продолжительность перелета — сказка, мечта… Нет, не сказка. Так сократить расстояния, отдать весь земной шар по-настоящему во владение человеку позволят космические ракеты. Мы называем их здесь космическими не потому, что они должны будут далеко вылетать из атмосферы в космическое пространство, а потому, что в полете они будут подчиняться тем же законам, что и космические тела. Они не будут, как аэростаты, плавать в атмосфере, они не будут, подобно самолетам, опираться крыльями и винтом о воздух. Они будут свободно падать… Совершим с вами этот волшебный перелет из Москвы во Владивосток на космической ракете. Условимся, что у нас на календаре не 1955, а 196… год. …Не знаю, в каком из пригородов Москвы расположится будущий космопорт пассажирского сообщения Москва — Владивосток. Не знаю, каким видом транспорта приедем мы сюда. Может быть, скромный ВЧ — автомобиль, получающий энергию в виде токов высокой частоты из кабеля, проложенного под асфальтом шоссе, — затормозит свой бег у этого белого с высоким серебристым шпилем здания. Может быть, уже найдут широкое применение для пригородного сообщения небольшие вертолеты и на одной из этих машин мы и опустимся на бетонное поле космовокзала… Во всяком случае — мы уже здесь. На середине космопорта стоит вертикально похожая на какой-то полуфантастический обелиск наша ракета. Приблизившись, рассматриваем ее в деталях. Да, это безусловно двухступенчатая ракета. Большая, видимо, первая ступень ракеты имеет в длину свыше 30 метров. Узкими соплами своих пяти реактивных двигателей она стоит на бетонном основании, имеющем форму чаши. Это сделано для того, догадываемся мы, чтобы газы горения, выбрасываемые в первые секунды работы моторов ракеты, отражались не по поверхности Земли, а вверх, и не могли повредить значительной площади. К телу большой ракеты плотно прижалась меньшая. Она тоньше и короче первой. Ее длина всего около 20 метров. Она тоже соплами своих трех реактивных двигателей плотно опирается на бетон рядом с первой. Видимо, двигатели малой ракеты могут работать и в том случае, когда большая несущая ракета не отцепилась, то есть все восемь двигателей ракеты могут работать одновременно. — При их одновременной работе, — поясняет подошедший к нам капитан этого сверкающего серебром в лучах заходящего Солнца корабля — человек в белом кителе с широким спокойным лицом и внимательным взглядом глаз, — все эти двигатели разовьют гигантское тяговое усилие — свыше 350 тыс. килограммов. — Так много! — удивляемся мы. — Это не очень много, — спокойно отвечает он, вглядываясь в наши лица. — Космические корабли для межпланетных сообщений снабжены двигателями с суммарной тягой в несколько миллионов килограммов. Я уж не говорю о кораблях для сверхдальних межпланетных рейсов, снабженных атомными двигателями… А что — вы разве совсем незнакомы с достижениями ракетной техники за последние 10 лет?.. Знакомы ли мы с ней? Конечно, нет. К сожалению, в настоящее время наши знания о ней не простираются дальше 1955 года. Об этом мы честно сообщаем капитану. Нельзя сказать неправду человеку с таким открытым и добрым лицом… — Да, тогда для вас многое будет ново. Вам придется испытать много интересных ощущений… Впрочем, отлет через 10 минут, попрошу вас занять места в пассажирской каюте ракеты. Мы входим в легкую алюминиевую кабину переносного лифта, и она поднимает нас прямо к входному люку малой ракеты. Проезжая, мы видим, как в помещениях большой ракеты занимает свои места экипаж. Входим в пассажирскую каюту. Мягкие удобные сиденья, круглые иллюминаторы, закрытые темными стеклами, — догадываемся — для предохранения от возможных ожогов не ослабленной атмосферой солнечной радиацией. Впереди экран телевизора. Что ж, за время полета можно будет просмотреть последний кинофильм или второй тайм международной футбольной игры. Устраиваемся в наших креслах. Как в них удобно! Но ведь это удобно только сейчас, когда ракета стоит вертикально. А в полете она, наверное, примет горизонтальное положение. В этом случае мы никак не усидим в креслах, мы выпадем из них, как горох из перевернутого стакана…
Капитан успокаивает нас. Он советует нам подальше откинуться на спинки, полулечь. Оказывается, в полете кресла будут сами устанавливаться в том же относительно силы тяжести направлении, что и сейчас, какие бы положения ни приняла ракета. Для этого кресла оборудованы гироскопами специальной конструкции. Эти гироскопы не то у каждого кресла свои, не то на все кресла один большой гироскоп. Переспросить мы не успели, капитан поднялся в рубку управления. Да и пора. До отлета осталось всего 2 минуты. Напряженно смотрим на часы: полторы минуты, минута, 30 секунд… Ровно… Спинки и сидения кресел с силой начинают давить нам в спину. А, это действие ускорения. Видимо, перегрузка здесь не очень большая, мы ее легко переносим. Вот я поднимаю руку, поворачиваю голову. Сквозь темное стекло иллюминатора видна поверхность Земли — примерно такая же, какой мы не раз видели ее на снимках с высотных ракет. Правда, большая часть горизонта заслоняется неудобно поставленным треугольным крылом ракеты. Небо чернеет. Значит, мы уже прошли основную часть земной атмосферы. Но почему не слышно шума реактивных двигателей, почему не чувствуется вибрации корабля? Ответ на этот вопрос сразу не приходит. Уже после посадки капитан объяснил, что сзади пассажирской каюты в ракете расположены баки для горючего и кислорода — вот они-то и поглощают в своей массе звуковые колебания и вибрации. Прошло уже более 2 минут. По тому, как качнулся горизонт, догадываемся, что корабль резко изменил положение в пространстве. А, это отцепилась несущая ракета. Экипаж благополучно вернет ее на свой космопорт. Она сыграла уже свою роль, подняв нашу ракету на высоту свыше 25 километров. Двигатели нашей ракеты продолжают работать. Но чувство перегрузки, чувство излишней тяжести постепенно уменьшается и сменяется чувством необыкновенной легкости. Значит, ускорение, сообщаемое ракете двигателями, стало даже меньше земного… А вот и совсем пропали огненные струи выхлопов, тянувшиеся из сопел ракеты, видимых в иллюминатор. Ощущение необыкновенной легкости возникает во всем теле. Кажется, что ракета стремительно падает в какую-то бездонную пропасть. Вот оно, состояние той самой невесомости, о влиянии которой на человеческий организм столько спорили врачи в наше время… Да, корабль действительно падает, точнее, он летит по инерции на высоте свыше 500 километров от поверхности Земли в столь разреженных слоях атмосферы, что они уже не оказывают ему практически никакого сопротивления. Летит он со скоростью около 5 километров в секунду по дуге эллипса, один из фокусов которого находится в центре Земли. Корабль как бы совершил прыжок: оттолкнулся от Земли и теперь летит, приближаясь к верхней точке этого прыжка. А общая длина его пути по поверхности Земли превысит 9000 километров. Из рубки управления спускается капитан. Он по-прежнему спокоен, но, видимо, и ему не легко передвигаться в этих странных условиях невесомости. Добравшись до кресла, он садится и пристегивает себя к нему. Не будет ли бестактностью спросить его о возможности аварии? Но, словно угадав наши мысли, он говорит. — Авария нашей ракеты не более опасна, чем авария самолета. Если что-нибудь во время полета случиться, — даже трудно представить себе, что бы это могло быть… Ну, предположим, мы не рассчитали работу моторов, ракета начала падать и двигатели не включаются. В этом случае мы отцепляем всю заднюю часть ракеты — все баки с горючим, насосы, дозаторы, двигатели. Они падают мертвым грузом на Землю, а наша кабина, превратившись в планер, на этих крыльях спокойно скользит к Земле… Посадку ее произведу, как посадку обыкновенного планера… На экране телевизора вспыхивает изображение. На зеленом поле стадиона выстроились обе команды. Начинается игра. Немножко странно смотреть это цветное телеизображение, находясь в состоянии невесомости в кабине ракетного корабля, движущегося с колоссальной скоростью в заоблачных далях ионосферы где-то между Уралом и Байкалом — на расстоянии 1000 километров от стадиона в Лужниках, где проходит состязание. А может быть, это просто с непривычки кажется странным… Но вот прошло несколько более часа. Капитан вернулся в свою кабину. Опять заработали моторы. По тому, как снова качнулся и изменил свое положение горизонт, догадываемся о новом изменении положения, корпуса корабля в пространстве. Мы не можем еще различить на горизонте — он весь затянут пленками облаков — очертаний Азиатского материка. А огненные струи из сопел двигателей вытянулись сейчас в направлении нашего полета. Со стороны, наверное, может показаться, что это светом трех чудовищных фар освещает себе дорогу заблудившееся между звезд чудовище. Ускорение, вернее, замедление, которое по своему действию на организм ничем не отличается от ускорения, становится все больше, но не превосходит перегрузки при взлете корабля. Оно составляет примерно 30 метров в секунду за секунду, около 3g. Это легко может перенести всякий здоровый человек… И вот, наконец, мягкий толчок — и ракета уже бежит, как обыкновенный самолет, только вперед соплом реактивного двигателя, по бетонной дорожке космовокзала. Вот она остановилась окончательно. Открывается дверь кабины, и мы выходим наружу. Такой же космопорт, как и под Москвой. Белые здания гостиницы, управления, полосатые зонтики ресторана на крыше четвертого этажа. Вдалеке ажурные антенны радиотелеуправления. Красный флаг в синем небе на сверкающей игле шпиля. Но это не Москва. Это Владивосток. И весь перелет занял всего несколько больше часа. Сделав здесь все свои дела, вы можете вечером вернуться таким же ракетным поездом в Москву. Такие ракетные сообщения между отдаленными пунктами на поверхности земного шара — на расстояние 2, 5, 10 тысяч километров — не фантазия, а ближайшая задача в развитии ракетной техники, одна из ступеней, на которую ракетная техника должна будет подняться.
РОЖДЕНИЕ ВТОРОЙ ЛУНЫ Начиная чуть ли не со времен Галилея, когда люди узнали о существовании у некоторых планет нескольких спутников, многие астрономы пытались ответить на вопрос, является ли Луна единственным спутником нашей Земли. Неоднократно появлялись сообщения о том, что обнаружен второй спутник нашей планеты, невидимый простым глазом и трудно различимый в телескопы из-за своих слишком малых размеров. Однако проверка таких сообщений всегда опровергала их. Второй спутник нашей планеты не обнаружен и до сегодняшнего дня. По всей вероятности, такого спутника сколь-либо значительной величины Земля не имела и не имеет. Но обязательно будет иметь в будущем. И возможно, не одну, а много искусственных лун, созданных с самыми разнообразными целями, разной величины, движущихся по разным орбитам и на разных расстояниях от Земли. Видимо, будут среди этих искусственных спутников и гигантские — целые космогорода, со своими оранжереями; гелиоэлектростанциями, астрономическими обсерваториями, может быть, с ресторанами и гостиницами для транзитных пассажиров. И будут скромные спутнички-малютки весом всего в несколько десятков килограммов, отправленные учеными, вооружившими их специальными приборами, на разведку какой-нибудь из тайн космоса. И, конечно, первым искусственным спутником нашей Земли будет не гигантский космогород, а крошечный автоматический разведчик. Создать такой спутник Земли можно уже при современном уровне развития техники. Во многих странах мира разработаны даже проекты таких спутников и проекты ракет для отправки этих спутников на их круговую траекторию. Во всяком случае недалек тот день, когда, взревев реактивными моторами, рванется в синее небо гигантская ракета высотой метров в 45 и шириной метров в 10. Сначала медленным будет ее подъем, как и у всякой ракеты в первые мгновения полета. Затем, отполыхав струями раскаленных газов, она прорежет небо и, превратившись в едва заметную точку, растворится в его прозрачной голубизне. Проследим дальше за нашей ракетой. Вот иссякло все горючее первой ступени, съеденное прожорливыми реактивными двигателями. Автоматически отцепляется ее огромный корпус. Он еще летит по инерции вверх, но как быстро удаляется от него вторая ступень ракеты, беззвучно полыхающая в разреженном воздухе стратосферы огненной струей из своего реактивного двигателя! Потеряв всю скорость инерции, заторможенная к тому же сопротивлением воздуха, на мгновение застывает неподвижно первая ступень ракеты и начинает падать вниз. Уже добрая сотня километров разделяет вторую и первую ступени. И все выше и выше дерзко рвется эта легкая, получившая большую скорость от работы своего предшественника вторая ракета. До какой высоты сможет она подняться? Обычная достигаемая составными двухступенчатыми ракетами высота лишь не намного превышает 400 километров. Значит, еще около 100 километров пути вверх предстоит пролететь ракете. Но что это происходит с ней? Внезапно отклоняется в сторону бившая до сих пор вертикально вниз газовая струя, и ракета, совершив пологий поворот, ложится на параллельный поверхности Земли курс. Газовая струя вылетает строго горизонтально. Автоматы повернули ракету? Или команду ее механизмам передали с Земли? И сразу же еще одно превращение происходит с ракетой, летящей с огромной скоростью на высоте 320 километров над земной поверхностью. Оказывается, ракета состояла не из двух, а из трех ступеней. И эти ступени разделились. Медленно снижаясь, по очень пологой дуге движется мертвая, пустая вторая ступень. Но зато, еще и еще увеличивая скорость, летит, подобная метеору, третья ступень ракеты. И когда последняя капля горючего из ее баков в виде тонкой струйки раскаленного газа выбрасывается в ионосферу, ракета приобретает скорость в 7650 метров в секунду — круговую скорость движения. Мы уже говорили, что двигающееся с круговой скоростью по соответствующей орбите тело вечно падает и никогда не может упасть на Землю. Видимо, такой будет и судьба этого остроконечного, похожего на обломок карандаша остатка трехступенчатой могучей ракеты. Но, видимо, еще не все превращения, какие должны были совершиться с нашей ракетой, уже с ней совершились. Летящая со скоростью, почти невообразимой на поверхности Земли, скоростью, которую мы называем круговой, третья ступень ракеты вдруг раскрывается на две части. На ее половинках лежит, сверкая полированной алюминиевой и пластмассовой поверхностью, небольшой шар. Этот шар и есть первый искусственный спутник нашей планеты — ее вторая Луна, при рождении которой мы сейчас присутствовали. Новорожденная Луна, как и всякое небесное тело, имеет два главных движения. Она движется вокруг Земли и вертится вокруг своей оси. Она похожа на волчок, брошенный в космическое пространство. Советский ученый профессор Г. И. Покровский предлагает несколько иной способ запуска искусственного спутника на его орбиту. Его предложение еще упрощает задачу создания первого искусственного спутника. Для этой цели он предлагает использовать могучую энергию, колоссальные скорости, которых позволяет достичь направленный кумулированный взрыв. Мы уже говорили о том, что в последние десятилетия ученые нашли способ концентрировать энергию большой массы взрывчатого вещества в узком объеме. Для этого заряду придается специальная форма — в нем делается узкое конусообразное углубление, по поверхности которого и происходит стремительное горение взрывчатого вещества. Распространяющиеся перпендикулярно к плоскости горения газы сходятся в одном центре, как сходятся в одном фокусе солнечные лучи, упавшие на вогнутое зеркало телескопа. В этом центре происходит чрезвычайно высокая концентрация энергии и струйка раскаленных газов приобретает скорость в несколько десятков километров в секунду. Вот такой заряд взрывчатых веществ и предлагает поднять в головном отсеке двухступенчатой ракеты профессор Покровский. Когда ракета достигнет высоты 350–450 километров — потолка, на который пока может подняться современная жидкостная двухступенчатая ракета, — автоматически производится взрыв этого заряда. В яростном пламени кумулированной струйки вылетит параллельно поверхности Земли ее первый искусственный спутник — величиной с биллиардный шарик. Конечно, внутри его не будет никаких приборов. Но, наблюдая в телескопы за его полетом, ученые смогут получить некоторые данные о сопротивлении воздуха его движению вокруг Земли — как раз те данные, которые будут так необходимы при запуске более крупных спутников с приборами и людьми. Конечно, искусственного спутника большей, чем биллиардный шарик, величины, а тем более искусственного спутника с приборами и людьми таким способом запустить не удастся. Но, возможно, что кумулированный взрыв будет использоваться при запуске некоторых видов искусственных спутников и большей величины, но не как основная сила, которая придает ему всю необходимую для движения по круговой орбите горизонтальную скорость, а как последний толчок, который выбросит искусственный спутник из третьей ступени ракеты, прибавив к скорости, набранной работой реактивных двигателей, небольшую недостающую до круговой скорость.
АВТОМАТИЧЕСКАЯ ЛАБОРАТОРИЯ На расстоянии 320 километров от Земли атмосфера находится в таком разреженном состоянии, что практически она не будет оказывать почти никакого сопротивления движущимся в ней, даже с очень высокой скоростью, телам. Мы сказали «почти» не случайно. Небольшое сопротивление она все-таки оказывает. Вот алюминиевый шар искусственной луны соскочил с раскрытых половинок ракеты и начал их медленно обгонять. Видимо, его аэродинамическая форма несколько лучше и сопротивление, оказываемое ему в полете, меньше, чем остаткам ракеты. Но в течение еще сравнительно длительного времени они движутся почти рядом… Скорость искусственной луны огромна; мы уже говорили, что она равна 7650 метрам в секунду, что составляет около 27500 км/час. Значит, вокруг земного шара полный оборот она сделает меньше чем за полтора часа. А в сутки эта искусственная луна будет восходить и заходить 16 раз. По утрам и вечерам ее, освещенную лучами уже закатившегося Солнца, можно будет увидеть в бинокль или небольшой телескоп. Можно будет увидеть в темносинем закатном небе первое космическое тело, созданное мыслью и руками человека. Познакомимся с «населением» этой искусственной планеты, посмотрим, каким целям она служит. Искусственная луна представляет собой полый алюминиевый шар диаметром несколько более полуметра. Когда перед назначением в земные луны инженеры взвесили его в лаборатории, он весил вместе со всем оборудованием, размещенным у него внутри, чуть больше 40 килограммов. Большую часть этого веса составляет именно оборудование. Искусственная луна движется вокруг земного шара по своеобразной траектории. Она проходит над обоими земными полюсами, и при том таким образом, что затмения этого спутника Землей в первые дни его полета случиться не может. Новая луна ни на мгновение не погружается в земную тень; она скользит по вечерним и утренним зорям, всегда оставаясь освещенной Солнцем. Это, конечно, не случайно и вызывается двумя обстоятельствами. Во-первых, тем, что изучение радиации излучения Солнца является одной из важнейших задач, поставленных перед ее приборами. Во-вторых, потому, что Солнце дает энергию для работы всех ее приборов. Искусственная луна стремительно вращается вокруг своей оси. Это вращение ей сообщили на Земле еще до вылета ракеты, забросившей ее сюда, в космическое пространство. А кроме того, она снабжена небольшими выступами, расположенными так, что даже очень небольшое давление атмосферы на эти выступы сообщает искусственной луне дополнительное вращение, раскручивает ее.
Эта забота о том, чтобы первый же искусственный спутник, созданный человеком, приобрел все формы движения, свойственные небесным телам, созданным самой природой, тоже, конечно, не случайна. Это обеспечивает искусственной луне устойчивость положения, гарантирует, что к лучам Солнца она всегда повернута одной стороной, точнее, одним полюсом. У этой крошки, как видим, есть даже полюса… Вся освещенная солнечными лучами сторона искусственного спутника накрыта пластмассовой линзой, концентрирующей лучи Солнца на фотоэлектрической батарее, вырабатывающей электрический ток. Этот ток производит постоянно подзарядку небольших аккумуляторов, питающих энергией всю аппаратуру искусственного спутника. Такова гелиоэлектростанция — энергетическое сердце искусственной луны. В обращенной к Солнцу ее пластмассовой линзе есть два отверстия. Одно из этих отверстий закрыто линзой из кварца, отлично пропускающего ультрафиолетовые лучи. Прибор, фиксирующий и записывающий их общую интенсивность, изучающий спектр ультрафиолетовых лучей, размещен как раз за этим отверстием. Другое отверстие закрыто пластинкой из бериллия. Какие же лучи солнечного спектра смогут пройти сквозь столь непрозрачную металлическую пластинку? Только рентгеновы. Работу аппаратуры для исследования излучения Солнцем рентгеновых лучей и обеспечивает это отверстие, прикрытое бериллиевой шторой. На поверхности искусственного спутника есть и еще одно отверстие — в области «экватора». В это отверстие открывается устройство для создания… дымовой завесы, дымового облака из паров металлического натрия, посредством которых можно бы было обнаружить местонахождение спутника на небе. Центробежная сила разбросает вырывающиеся из отверстия пары металлического натрия; их облачко, освещенное лучами заходящего Солнца, будет хорошо видно с Земли. Если поднять крышку и посмотреть, какие еще аппараты находятся внутри нашей искусственной луны, мы удивимся их количеству и разнообразию. Здесь мы найдем и счетчики гамма-лучей и космических лучей, приборы для изучения излучений полярных сияний, счетчик электронов, магнитометр для исследования магнитного поля Земли. А у полюса, противоположного тому, который обращен к Солнцу, разместился целый узел связи. Прежде всего вершиной этого полюса служит алюминиевый штырь довольно значительной длины. Этот штырь делает искусственную луну похожей на проткнутое карандашом яблоко. А служит он в качестве антенны. Ведь искусственному спутнику необходимо регулярно поддерживать связь с Землей, иначе не будет смысла создавать его. Исследовательская аппаратура, размещенная в искусственном спутнике, ведет непрерывную запись показаний. Эти показания зашифровываются системой радиосигналов и поступают на передающую радиостанцию. Приборы ведут наблюдения непрерывно, а передающая станция включается периодически — через каждые 45 минут. Итоги 45-минутных исследований многочисленных приборов будут сообщаться на Землю в короткой 30-секундной передаче. Время передачи следует предельно сократить, так как она требует больших затрат энергии, которая возмещается довольно медленно. Если не выключать радиопередатчик, аккумуляторы разрядятся и приостановится работа всех приборов. Таково внутреннее и внешнее устройство внеземной автоматической научно-исследовательской лаборатории, которой и будет по существу являться наша искусственная луна. Примерно такой проект разработал в деталях американский ученый проф. Зингер. По его мнению, ни о каком военном использовании такой луны не может быть и речи, — она слишком мала для этого. Искусственная луна — оружие науки и прогресса, а не оружие истребления человечества. Трудно сказать, в течение какого времени сможет оставаться автоматическая лаборатория искусственным спутником Земли. Хотя сопротивление разреженной атмосферы и незначительно, но она все же будет его испытывать и медленно терять скорость движения. А потеряв скорость, она будет снижаться, попадая во все более плотные слои атмосферы, которые все сильнее будут ее тормозить. И наконец, раскалившись от трения о воздух, она, как метеор, сгорит в вечернем небе. По предположениям проф. Зингера, первый искусственный спутник просуществует в течение нескольких недель. Менее оптимистично настроенные ученые считают, что он сможет сделать едва один-два десятка оборотов вокруг земного шара, то есть продолжительность его жизни в космосе будет измеряться только часами и днями. Но и в том и другом случае научная возможность и ценность такого опыта несомненны. Проект проф. Зингера — отнюдь не единственный в своем роде. В августе 1955 года на международном конгрессе астронавтов в Копенгагене немецкий специалист в области ракетного дела — Эрике, работающий в США, доложил о своем проекте искусственного спутника, проектируемого для меньших высот — всего в 150 километров. Трение об атмосферу, которая здесь более плотна и оказывает большее сопротивление, чем на высоте 300 километров, предполагается компенсировать за счет периодического дополнительного сжигания топлива в ракетных двигателях. По расчетам Эрике, для облета один раз вокруг Земли спутнику понадобится всего 15 килограммов смеси бензина и кислорода. За луной-2 на разведку крайних слоев атмосферы и ближайших к Земле областей космического пространства отправятся луна-3, луна-4 и т. д. Разнообразнейшие задачи будут поставлены перед этими искусственными лунами. По мнению акад. Седова, уже сейчас имеется возможность создания искусственных спутников различных размеров и веса. Одни из них будут заниматься исключительно исследованием направлений воздушных течений, степени ионизации и других явлений в верхних слоях ионосферы, а также вляния их на погоду. Сигналов от этих искусственных лун будут ждать метеорологи. Данные их исследований помогут им уточнить свои долгосрочные прогнозы погоды. Другие искусственные луны, используя крайние области атмосферы как огромную аэродинамическую трубу, будут заниматься вопросами аэродинамики, торможения в условиях сверхвысоких разрежений и сверхвысоких скоростей. Конструкторы будущих космических ракет будут первыми интересоваться результатами этих опытов. Ведь для них чрезвычайно важно, как мы говорили уже, обеспечить торможение космического корабля при посадке на планету именно трением в высших слоях атмосферы. От результатов этих опытных исследований зависит очень многое в судьбе космических полетов… Биологи превратят искусственный спутник в оранжерею. Ведь им тоже важно знать, как влияют на всхожесть семян и на развитие растений те или иные составляющие внеземной радиации, какие меры надо предпринять, чтобы обеспечить наиболее интенсивную работу листьев по кругообороту кислорода. Без этих опытов также невозможно будет отправиться даже в самый первый космический рейс. Врачи отправят в серию кругосветных полетов мышей, кроликов, обезьян. Вот когда станет по-настоящему возможным изучение длительного влияния невесомости на живой организм, изучение влияния космической и ультрафиолетовой радиации на прохождение различных жизненных процессов. Все это тоже опыты, которые необходимо поставить, прежде чем в космическое пространство отправится первый человек. Итоги всех этих исследований, которые займут, по всей вероятности, не один год, а может быть, и не одно десятилетие, бесспорно, обогатят нашу науку, позволят значительно двинуть вперед метеорологию, геофизику, аэродинамику. Возможно, в ходе этих исследований будет открыто, какое-нибудь явление природы, которое произведет революционный переворот в той или иной области науки или техники. Но самое главное — они откроют широкую возможность развития космических полетов. В ходе этих опытов будут найдены, разработаны и проверены методы борьбы с вредным влиянием некоторых составляющих космической радиации, методы борьбы с метеоритами, уточнены вопросы отопления, освещения, использования в полете энергии Солнца и многое другое… Конечно, астронавтика не будет ждать, когда будут найдены ответы на все вопросы. Тотчас же за первыми удачными полетами животных в космическое пространство отправится человек. Искусственные спутники — новые луны станут обитаемыми. ЧЕЛОВЕК В КОСМОСЕ В гондоле стратостата «Осоавиахим-1», поднявшегося на предельную высоту — 22 тыс. метров, экипаж его сидел скорчившись. Встать во весь рост в ней не мог бы даже человек низкого роста. Гондола была сделана такой маленькой потому, что каждый грамм ее веса был на учете. Каждый лишний грамм снижал предельную высоту, на которую мог подняться стратостат, а для достижения большей высоты он требовал дальнейшего увеличения и без того огромного шара с газом. Еще острее стоит вопрос о весе космических кораблей всех видов, в том числе и искусственных спутников. Здесь каждый лишний грамм требует повышения начального веса топлива. И поэтому, по всей вероятности, кабина первого обитаемого искусственного спутника будет еще теснее, чем была кабина стратостата. Скорчившись, поджав ноги к коленям, упираясь лбом в приборные доски, дыша на замерзающие пальцы, в которых уже не держится карандаш, будет работать первый ученый, ставший космическим путешественником. Если его пребывание в космосе будет рассчитано не на несколько часов, а на несколько суток, то и спать придется ему так же, в этом же пневматическом кресле, не разгибая ног и спины. Но, чувствуя немоту во всем теле и не имея возможности потянуться, этот человек будет дрожать от счастья, следя за показаниями приборов, наблюдая все новые и новые удивительные явления, подтверждающие или опровергающие начисто его первоначальные теоретические предположения. И свое неудобное тесное сидение он не променяет на самое удобное кресло в мире. А его счастью будут завидовать тысячи людей на всех континентах… Этот обитаемый космический спутник будет не очень отличаться от описанной нами искусственной луны, населенной автоматами. Он будет, конечно, иметь несколько большую величину, герметически закрываться. В нем будет мягкое пневматическое кресло, которое смягчит большие ускорения при взлете. Кроме приборов для исследовательской работы, гелиоэлектростанций для зарядки аккумуляторов и радиостанций для связи, в нем будут еще размещены баллоны с кислородом для дыхания и устройства с химическими поглотителями углекислого газа. Заслонка от прямого действия солнечной радиации, — видимо, ее роль будет выполнять гелиоэлектростанция, — минимальный запас воды и пищи — вот и все, пожалуй, что будет предназначено для удобства человека в этом спутнике. Возможно, спутник будет состоять из двух частей, соединенных тросом и вращающихся вокруг общего центра. Это будет сделано для того, чтобы создать центробежную силу, заменяющую силу тяжести. В этом случае приборы астронавта будут снабжены гироскопом, обеспечивающим их постоянное положение в пространстве, несмотря на вращение всей системы. Разрабатываются в настоящее время проекты искусственных спутников и большей величины. Так, уже упоминавшийся ученый Эрике считает возможным создание искусственного спутника с людьми в виде самолета с защитными устройствами от воздействия аэродинамического нагрева. Общий вес такого спутника около 5 тонн. Он рассчитан на один облет вокруг земного шара на высоте 150 километров. По предположениям, первая искусственная луна, отработав положенный срок на круговых орбитах, сгорит при падении в более плотных слоях атмосферы. Конечно, ее можно было бы спасти, но… овчинка выделки не стоит. Для того чтобы снабдить ее устройствами, которые позволят не слишком быстро погасить скорость движения, а затем спокойно спуститься сквозь атмосферу, пришлось бы пожертвовать частью аппаратуры, чтобы сохранить невысокий общий вес, или, увеличив вес, соответственно увеличить и первоначальный вес ступеней ракеты. Конечно, хотелось бы сохранить для музея первую созданную человеком планету, но раз это очень дорого, пусть она погибнет. Она сделала свое дело. А как же быть в тех случаях, когда искусственный спутник все-таки необходимо опустить на Землю? Например, обитаемый искусственный спутник с человеком? Видимо, его придется снабдить выдвижными крыльями, управляя которыми он сможет держаться в верхних, более разреженных слоях атмосферы до тех пор, пока скорость его не снизится в несколько раз. Кроме того, его надо будет еще снабдить парашютом, который позволит ему благополучно приземлиться, затормозив падение в нижних слоях атмосферы. Может быть, придется снабдить его и реактивным двигателем для торможения скорости, а значит, и запасом горючего. Но этот вопрос отнюдь нельзя в настоящее время считать уже решенным; торможение в атмосфере — дело отнюдь не такое простое, как кажется. Метеоры, вторгшиеся в атмосферу, нередко сгорают в ней без остатка. Очевидцы рассказывают, что «Фау-2» во время падения на Лондон светились слабым красным цветом. По расчетам, и космическая ракета должна накалиться в атмосфере до 700°. Для того чтобы уменьшить эту температуру торможения, надо растянуть его на возможно более продолжительное время. А это тоже очень непросто. Только дальнейшие исследования теоретического и экспериментального характера в области аэродинамики сверхвысоких скоростей в газах сверхвысокого разрежения позволят дать окончательные рекомендации по этому вопросу. Итак, тормозные крылышки и устройство для помещения парашюта — вот что будет находиться снаружи первых обитаемых искусственных спутников. КОСМИЧЕСКИЙ ОСТРОВ Все выше и выше будут забрасываться ракетами искусственные луны, все большей и большей величины они будут, все больше комфорта будут предоставлять своим пассажирам. И наконец, далеко за пределами атмосферы, на расстоянии нескольких тысяч километров от Земли, начнется строительство «вечного» искусственного спутника. Вечного потому, что если только не решат иначе его создатели, он никогда не сойдет со своей орбиты, вечно будет кружиться вокруг Земли. Один из проектов обитаемого искусственного спутника предложил инженер Б. Ляпунов. Этот искусственный спутник будет собираться в космическом пространстве из остовов ракет, брошенных на эту орбиту с таким расчетом, чтобы они там встретились. Первые строители космического пространства в специальных костюмах, приспособленных для работы в пустоте, будут скреплять между собой эти летящие с огромной скоростью относительно Земли, но медленно плывущие друг относительно друга куски ракет. Бесспорно, этот спутник будет цельносварным, причем сварен он будет совершенно новым, не известным на Земле способом сварки — гелиосваркой. Вогнутые зеркала и легкие линзы, концентрирующие в одной точке потоки солнечных лучей, — вот сварочные аппараты космических сварщиков. А какие чистые, сверкающие неокисленным металлом швы — без малейших включений шлаков, пузырьков газа — будут получаться в космическом пространстве!
По всей вероятности, космические строители будут привязаны к строящемуся искусственному спутнику тонкими, но прочными нейлоновыми канатами. Тяжести этих «оков» они не почувствуют — там нет тяжести, — а помешать зазевавшемуся астронавту улететь навсегда в космическое пространство они смогут. Ведь каждый неудачный толчок, случайное движение могут там вызвать стремительный полет. И через несколько минут человек, если он не будет привязан к массивному корпусу спутника, превратится в крохотную звездочку, стремительно удаляющуюся в мировое пространство. Попробуйте найти в нем вот так случайно «упорхнувшего» человека! Конечно, космические строители будут снабжены запасом портативных ракет, с помощью которых они смогут передвигаться в пространстве; их костюмы будут иметь приемно-передающие радиостанции, чтобы они могли в случае нужды позвать на помощь и дать пеленг для своего обнаружения. Они наденут ботинки с магнитными подошвами, которые позволят им твердо ступать по стальным деталям космического острова, хотя тяжелой стали там будет и не очень много. Но нейлоновые шнуры все равно не окажутся лишними. Ракеты, ставшие искусственными спутниками Земли, — вот единственные детали будущего космического острова. Строители сварят их друг с другом так, что образуется огромное кольцо, висящее в космосе. Кольцу придадут вращательное движение, и на космическом острове появится искусственная тяжесть. Ни один кусочек металла, ни один грамм вещества не пойдет в отходы на этом строительстве. С самого начала оно обзаведется своей энергетической базой — гелиоэлектростанцией. Зеркала ее — это разрезанные вдоль и разогнутые так, чтобы образовать параболоид, металлические корпуса ракет. Внутренние поверхности этих ракет, ставших зеркалами, ещё на Земле будут тщательно отполированы. В фокусе параболоида космической гелиоэлектростанции находится паровой котел — медная трубка, в которой движется вода. Котел этот прямоточный, — пройдя вдоль всего зеркала вода целиком испаряется. Пар высокого давления поступает в находящуюся в тени зеркала паровую турбину, а из нее — в свернутую спиралью трубку — конденсатор. Сколь угодно глубокое охлаждение можно обеспечить в этом конденсаторе, отдающем тепло теплоизлучением непосредственно космическому пространству, имеющему температуру, близкую к абсолютному нулю. Величина конденсатора рассчитана таким образом, что в нем поддерживаются температура около 4° выше нуля и давление в несколько сотых долей атмосферы. Сконденсировавшуюся воду насос — обычный центробежный насос высокого давления, приводимый в движение от вала паровой турбины, — подает снова в паровой котел. И цикл начинается сначала. Вода забирает тепло солнечных лучей и отдает его лопаткам турбины, а затем снова возвращается за порцией тепла. Возможно, что теплоносителем, рабочим телом в космической паротурбинной установке, будет и не вода. Ученые подберут такое рабочее тело, которое сможет лучше использовать громадную разницу температурных перепадов между освещенным концентрированными солнечными лучами «паровым котлом» и затененным конденсатором, по существу погруженным в холод космического пространства. Между тем крайняя нижняя температура, при которой еще можно работать с водой, чрезвычайно высока — 0°! С валом паровой турбины соединен вал электрогенератора. Вырабатываемый в нем электрический ток поступит в распоряжение строителей искусственного спутника. Гелиоэлектростанция будет довольно устойчиво висеть в пространстве. Устойчивость ей придает наличие быстровращающегося ротора паровой турбины и электрогенератора — своеобразного могучего гироскопа. В устройстве ротора турбоагрегата для космической гелиоэнергоустановки будет одна интересная деталь. Не весь ротор будет вертеться в одну сторону. Вал ротора будет разделен на две части, обладающие строго одинаковым моментом инерции и вращающиеся навстречу друг другу. Если инженеры не предусмотрят этого, вся гелиоэлектростанция придет во вращательное движение — ведь под ней нет фундамента, которому она сможет передать реактивный момент, как это происходит у «земных» паровых турбин. Конечно, все оборудование гелиоэлектростанции — турбины, электрогенератор, холодильник — будут изготовлять на Земле, а в космосе только монтировать. Невдалеке будет смонтирован и гигантский телескоп искусственного спутника. Его зеркало диаметром в несколько десятков метров сделают из тончайшего металла. И астрономы не боятся, что оно прогнется или изменит свою форму, как изменяют свою форму, прогибаясь под собственной тяжестью, линзы крупных телескопов на Земле. В космосе тяжести нет. А вот поворачивать это зеркало, действительно, надо будет очень осторожно, иначе его изомнут инерционные усилия. Только из-за этого придется снабдить сверкающий параболоид космического телескопа с выпуклой стороны тонкими ребрами жесткости. Еще больше по размерам будет космический радиотелескоп. Его сеть из упругой тонкой проволоки займет площадь в несколько десятков тысяч квадратных метров. Астрономы, физики уже усядутся за выполнение программ своих научных работ, когда строители еще далеко не закончат отделки основных помещений космического острова. Через каждые несколько часов будут прибывать с Земли все новые грузовые ракеты. Из их корпусов сварят второй ряд кольца. Одновременно в середине смонтируют космопорт и оранжерею. В центре кольца встанет большая труба. Прилетающие на космический остров пассажирские ракеты будут влетать в эту центральную трубу, ось которой будет всегда ориентирована строго в одном направлении пространства. В стенках этой трубы устроят гигантские шлюзы, в которые могут быть помещены космические корабли до 100 метров длиной. Это будут как бы стоянки космических кораблей, их ремонтные базы. Остальную часть пространства внутри кольца космического острова займет оранжерея. Ее «нижнее» дно сделают также из листов обшивок ракет, а переднюю, обращенную к Солнцу сторону закроют пластмассовой прозрачной крышкой диаметром примерно в 250 метров. Расчеты этой крышки на прочность доставят в свое время немало хлопот инженерам. Хотя давление воздуха в оранжерее предполагается поддерживать и значительно ниже атмосферного, общее давление его на огромную площадь этой прозрачной крышки получится огромным. Для прочности рамы передней прозрачной стенки соединят металлическими тягами с дном оранжереи.
Когда работы будут закончены, здесь буйно зазеленеет растительность. Резкое изменение условий жизни, видимо, вызовет и резкое изменение форм растений. Космические садоводы предполагают, что здесь будут выращиваться невиданных на Земле величины, вкуса и питательности плоды… Но это в далеком будущем. Строителей же первого космического острова больше всего будет беспокоить качество сварных швов. Они должны обеспечивать полную герметичность. Иначе произойдет утечка воздуха, которая может кончиться катастрофой для всего населения космического острова. И наконец, настанет момент, когда монтаж острова будет закончен. Прилетающие сюда ракеты станут привозить не детали острова, не материалы для монтажа, а горючее. Им заполнят баки космических ракет, органически вошедших в состав острова. Космический остров превратится в огромную летающую в пространстве… нефтебазу. Привозящие горючее космические корабли уже не станут использовать как строительный материал, а будут возвращать на Землю. Десятки рейсов совершит каждый из них, и только когда совсем износятся его детали, будет он приобщен к общей массе космического острова и превратится в одну из его цистерн. А в космодроме — центральной трубе космического острова — будут уже собираться аппараты для дальних космических рейсов. ГРУЗОВЫЕ ПОЕЗДА Один из создателей известной ракеты «Фау-2», работающий ныне в США, Вернер фон Браун, опубликовал проект трехступенчатой ракеты, которая, по его мнению, могла бы обеспечить грузопассажирские сообщения со строящимся искусственным спутником. Общая высота всех ступеней этой ракеты составляет 80 метров, диаметр самой широкой нижней части — 20 метров, а общий вес будет равен примерно 6400 тоннам. Таким образом, этот космический корабль по своим начальным размерам и весу напоминает небольшой крейсер. В качестве горючего для двигателей в этой ракете предполагается использовать азотную кислоту и гидразин, подаваемые в камеры сгорания насосами высокой производительности. В настоящее время гидразин и азотная кислота являются самым энергичным известным нам химическим топливом и поэтому наиболее пригодным для космических ракет. Насосы для подачи гидразина и азотной кислоты в камеры сгорания приводятся в движение турбинами, работающими на перекиси водорода. Значит, кроме основного запаса горючего, для работы реактивных двигателей ракета должна будет захватить и баллоны с перекисью водорода. Моторная группа первой ступени ракеты, по замыслу Брауна, coстоит из 39 главных моторов и 12 моторов для управления. Общая тяга всех этих двигателей составит 12 800 тонн, то есть в первый же момент вдвое превзойдет вес космического корабля. В течение 84 секунд выгорит 4800 тонн горючего, что составляет 75 процентов веса всей ракеты. Опустошенная первая ступень отцепится от космического корабля и на парашюте спустится на Землю. В работу включится моторная группа второй ступени, состоящая из 22 основных двигателей и 12 двигателей для управления. Когда топливо в ней выгорит, она так же отцепится и спустится на Землю. Отцепляющиеся ступени ракет не должны пропасть, их предполагается использовать не для одного полета. Поэтому спуск их будет осуществляться на парашютах, а в момент приземления для торможения скорости предполагается зажигать пороховые ракеты. Третья и последняя ступень ракеты имеет всего пять жидкостных ракетных двигателей. В носовой ее части расположено помещение для команды, грузов, приборов управления и кабина управления. Две пары стреловидных крыльев, снабженных рулями управления и элеронами, предназначаются для планирования и спуска при возвращении на Землю. Разработаны и другие проекты составных ракет для сообщения с искусственным спутником. Интересный проект большегрузной ракеты такого типа был доложен на 9-м съезде американского ракетного общества. По этому проекту, ракета для связи с искусственным спутником — ее назвали «космическим паромом» — состоит из трех ступеней. Каждая из ступеней имеет свои треугольные крылья и убирающиеся шасси; каждой управляют собственные команды. Общая высота ракеты в собранном виде достигает 85,5 метра. Общий вес конструкции составляет 9000 тонн, из них на долю горючего приходится 7800 тонн. Вес последней, третьей ступени, которая достигнет орбиты искусственного спутника, отстоящего на 800 километров от поверхности Земли, вместе с людьми и грузами составляет 35 тонн. Первая, самая крупная ступень обеспечивает подъем всего гигантского «космического парома» на высоту до 40 километров и сообщает ему скорость около 375 километров в час. Отцепившись, она опустится, как обыкновенный планер, примерно в 480 километрах к востоку от места взлета. Вторая ступень доведет «паром» до высоты в 65 километров, так же отцепится и спланирует в 1600 километрах от места взлета. Включится двигатель третьей ступени. Он и доведет «паром» до искусственного спутника. Высадив людей и разгрузившись, он вернется на Землю и приземлится на том же самом месте, с какого взлетел. Предложенная конструкция составной ракеты также рассчитана не на один, а на ряд рейсов. Первая и вторая ступени, опустившиеся на землю далеко от исходного пункта взлета, вернутся к нему по воздуху. К их крыльям будут прицеплены реактивные или поршневые двигатели, часть баков будет заправлена горючим, и они, как обыкновенные самолеты, вернутся, ведомые своими экипажами, к месту старта. Здесь их соберут снова в трехступенчатую составную ракету, заправят горючим, и «паром» будет готов для новой космической переправы. Третья ступень этой космической ракеты, получившая круговую скорость, может стать и составным звеном, деталью при постройке космического спутника. Аналогичные проекты есть и в других странах. Все это свидетельствует о том, что при известных затратах идея создания даже крупного искусственного спутника Земли является, с точки зрения современной техники, абсолютно реальной и осуществимой. ЛАБОРАТОРИЯ В КОСМОСЕ Космос… Это же «пустота». Ничего там нет… И зачем стремиться в эту пустоту? Разве на Земле так уж плохо? Так рассуждают некоторые малознающие люди. Но на вопрос о том, что нам сразу же дает завоевание космоса, ответить следует. Прежде всего космос — это не пустота. Космическое пространство содержит, хотя и очень разреженные, облака пыли и газа. Кроме того, оно пронизано лучами солнечной и звездной радиации, гравитационными, электрическими и магнитными полями. Первыми в космос полетят ученые. Их привлекают необыкновенные условия, которые они там смогут создать для своих опытов. Прежде всего — невесомость. Биологи будут ставить опыты с растениями и животными, металлурги — изучать кристаллические структуры металлов, застывающих без воздействия тяжести, физики — взаимодействие невесомых сред, например газа и жидкости. Космические лучи. Ученые поднимают многотонные приборы для исследования космических лучей на вершины высочайших гор. Советские ученые А. И. Алиханов и А. И. Алиханян ведут исследование космических лучей на горе Арагац в Армении на высоте 3250 метров над уровнем моря. Приборы для изучения космических частиц поднимают шары-зонды и высотные ракеты. И все-таки ни один ученый в мире не исследовал еще космических лучей в их натуральном, не искаженном атмосферой виде. Разгадка тайн космических лучей значительно двинула бы вперед наши знания о природе микромира элементарных частиц. Только в космическом пространстве ученые получат возможность изучать космические лучи в их первозданном виде. Солнце. Его деятельность слишком много значит для жизни на Земле, чтобы нас не интересовали тайны его излучения. Между тем до нас оно доходит далеко не полным; сквозь атмосферу проникает меньшая половина спектра. Изучить полный спектр Солнца, его изменение, влияние этих изменений на погоду на Земле, на магнитные бури, на движение атмосферы — все это можно будет сделать только с внеземной лаборатории. Ответить на вопрос, удобно ли вести наблюдения с Земли, могут астрономы. С их точки зрения, на Земле работать совсем не так уж хорошо, как кажется с первого взгляда. Во-первых, астрономов очень не устраивает непрозрачность атмосферы для многих видов излучения. Если бы эти лучи достигали дна воздушного океана, астрономы заставили бы их рассказать еще очень многое о Вселенной. Во-вторых, астрономов не устраивают постоянные волнения в атмосфере: из-за них дрожит и расплывается, теряет четкость диск планеты, видимой в телескоп. И, прильнув к окуляру, астроном проклинает земные условия наблюдения. Он мечтает о космической обсерватории. О, как много нового открыл бы он во Вселенной, если бы смог работать там, вне Земли, вне атмосферы! Температуры. В лабораториях ученых работают сутками сложные, дорогие, энергоемкие аппараты, создавая в крохотном объеме температуру, близкую к абсолютному нулю. Покрываются толстым слоем льда и инея трубопроводы, 100-градусным морозом пышет от стеклянных и металлических стенок, и, наконец, в пробирках появляются первые капли прозрачной легкой жидкости — сжиженного водорода или гелия. А дальше вниз по шкале температур путь еще тяжелее. И в результате на несколько минут в объеме пробирки создается температура всего на несколько десятых градуса выше абсолютного нуля. Температура космического пространства — лаборатории неограниченной величины — всего приблизительно на 4° выше абсолютного нуля. Чтобы получить такую температуру, надо только заслониться от лучей Солнца рядом экранов. Сколько новых тайн природы откроет физик, обладая неограниченной возможностью использовать столь низкие температуры! А рядом, сконцентрировав линзой или вогнутым зеркалом солнечные лучи, он получит температуру в несколько тысяч градусов. Возможность таких контрастов температур — еще один важный путь для исследователя. — Так что же? Внеземная станция нужна только ученым? Только для того, чтобы было написано еще несколько толстых книг, пересыпанных формулами, не понятными для подавляющего большинства людей? Да, первыми завоюют космос ученые. Они всегда бывают первыми разведчиками страны неведомого. Это ученые первыми поднялись в небо на воздушном шаре, а теперь мы пользуемся услугами авиации. Это ученые в своих пробирках намешали химических специй, чтобы мы ходили сейчас одетыми в шелковой одежде, доступной так недавно лишь королям и вельможам. Это ученые первыми накрутили проволочек и катушек, чтобы мы могли слышать и видеть у себя в комнате по радио и телевидению весь мир. Сегодняшнее открытие ученого, зашифрованное в рогатых математических формулах и специальных символах, кажущееся, на первый взгляд, таким отвлеченным и сугубо теоретическим, завтра дает невиданный толчок развитию техники, а послезавтра облегчает наш труд, дает нам новые удобства в жизни, сделает ее ярче, полнее. Интересов одной только науки достаточно для того, чтобы эту цель — создание внеземной лаборатории на искусственном спутнике — считать не только окупающимся, а прямо-таки чрезвычайно выгодным предприятием. Но интересы не только завтрашнего, а и сегодняшнего дня заставляют нас стремиться в космическое пространство. Атмосфера Земли, на дне которой мы живем, простирается на высоту выше 1000 километров. И все же она представляет собой единое взаимосвязное целое. То, что происходит в ее верхних слоях, определяет происходящее в нижних. Как улучшатся прогнозы погоды, когда метеорологи получат возможность узнавать о состоянии верхних слоев атмосферы, наблюдаемой с искусственного спутника! А не понимающих важности точного прогноза для транспорта, для сельского хозяйства, для строительства, наверное, уже не осталось. В атмосфере Земли движутся в настоящее время не только высотные ракеты, но и самолеты — пассажирские, почтовые, грузовые. С каждым годом растут скорости движения самолетов, а вместе с тем растет и сопротивление воздуха их полету. И наконец, наступает такой момент, когда колоссальное увеличение мощности двигателей, сжигание огромных количеств топлива почти не вызывает повышения скорости самолета. Сопротивление воздуха съедает весь прирост скорости. — Достигнут звуковой барьер, — говорят ученые… Где же выход? Как преодолеть звуковой барьер? На высоте 5 километров плотность воздуха в 1,6 раза ниже, чем у поверхности Земли, а на высоте 20 километров она меньше, чем у Земли, в 15,6 раза! Но и там сопротивление воздуха еще очень велико. Поэтому дальнейшего резкого повышения скоростей самолетов вероятнее всего ожидать с завоеванием больших высот полета, с переносом воздушных трасс в ионосферу. Но это можно будет осуществить, только изучив существующие там условия. А ведь ионосфера — это преддверие космического пространства. И удобнее всего изучать ее будет именно с искусственного спутника. Космос — это место, из которого одним взглядом можно окинуть целую половину земного шара. А это не так уж неважно не только для метеорологов, наблюдающих за движениями облачных масс. Специалисты по телевидению утверждают, что если бы удалось установить в космосе на искусственном спутнике телерадиопередаточную станцию, они обеспечили бы высококачественный прием телепрограммы на целой половине земного шара. А с помощью трех таких станций они берутся охватить весь земной шар. Это ли не заманчиво! Космос — это неисчерпаемые запасы энергии, забираемой, так сказать, из первоисточника — прямо от Солнца. И может быть, вслед за учеными первыми с прямыми практическими целями в космос двинутся энергетики — строители гелиоэлектростанций. Но ведь организация такой внеземной лаборатории — это еще и очередной шаг для завоевания других планет.
|
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|