|
||||
|
13. Часы таракана В июне 1960 года в Колд-Спринг-Харборе состоялся Международный симпозиум, посвященный биологическим часам, на который съехались сто пятьдесят ученых из самых разных стран. С трибуны этого симпозиума в числе прочих ученых рассказала о своей работе и Дженит Хар-кер, сотрудник Кембриджского университета. Твердым и ясным голосом Харкер начала свой доклад: «Современные исследования проблемы циркадных ритмов можно разделить на три группы: биохимические и биофизические исследования регулирующего механизма на клеточном уровне, изучение поведения организма в целом и, наконец, физиологические исследования, цель которых состоит в том, чтобы выяснить, каким образом клеточная ритмичность проявляется в поведении всего организма. Благодаря этой последней группе исследований мы начинаем в какой-то мере представлять себе, насколько сложными могут быть эндогенные регулирующие системы. Так, например, среди изучаемых взаимосвязанных процессов встретились такие, которые сами никакой ритмичностью не обладают и тем не менее существенны для ритмичного функционирования определенных клеток. Это обстоятельство, по-видимому, заслуживает особого внимания, так как исследователи, работающие в двух других направлениях, могли его совсем не заметить. Связь эндокринной системы с ритмом двигательной активности насекомых была впервые установлена на тараканах Periplaneta americana…». Дженит Харкер родилась и выросла в Австралии. После окончания Сиднейского университета она переехала в Англию, сначала в Манчестерский университет, а затем в Кембридж. Несмотря на большую загруженность преподавательскими и административными обязанностями, у Харкер хватало энергии заниматься и исследованиями биологических часов. После долгого чрезвычайно трудного подготовительного периода она разработала очень сложный метод, в основе которого лежали тончайшие хирургические операции, проводившиеся на тараканах. Но почему она остановила свой выбор на Periplaneta americana, на самом обычном американском таракане, а не на каком-либо другом живом организме? Ведь легко наблюдаемыми ритмами обладают многие растения и животные. Харкер выбрала таракана по ряду причин. Прежде всего, двигательная активность таракана очень точно приурочена к определенному времени. Это ночное животное, которое начинает двигаться почти сразу же после наступления темноты. При постоянном содержании в условиях чередования 12 часов света и 12 часов темноты тараканы начинают бегать уже через несколько минут после выключения света. Их двигательная активность достигает максимума примерно через два часа, а затем спустя три-четыре часа животные успокаиваются и пребывают в покое всю остальную часть периода темноты и 12-часовой период света. Если тараканов содержать в течение нескольких дней при непрерывном освещении, их реакция ничем не будет отличаться от того, что двумя столетиями ранее наблюдал у чувствительных растений де Мэран. Тараканы знают, когда должна была бы наступить темнота, и начинают бегать, хотя свет остается включенным. Лишь после продолжительного периода непрерывного освещения они постепенно теряют чувство времени и проявляют активность в совершенно неопределенное время. Поскольку такая двигательная активность может служить в качестве удобно наблюдаемых «стрелок» внутренних часов, таракан представляет собой исключительно подходящее для изучения ритмов животное. Он точно соблюдает 24-часовой цикл двигательной активности, сохраняет эту активность в течение нескольких дней при нарушении условий освещения и медленно утрачивает свой ритм при длительном непрерывном освещении (становится «аритмичным»). Как подопытное животное таракан хорош еще и по другим причинам. Он легко переносит лабораторные условия жизни; имеет достаточно большие размеры; неприхотлив в еде — может питаться практически чем угодно. И наконец, он является одним из примитивных ныне живущих крылатых насекомых. Отдельные части его относительно слабо развитой центральной нервной системы обладают значительной автономией. Обезглавленный таракан может прожить несколько дней. Он, конечно, не видит, не ест, запасы его энергии постепенно расходуются, но он продолжает бегать, спариваться, представляя таким образом, весьма любопытный объект для тех, кого интересуют различные аспекты его «безголового поведения». Таково существо, на котором Харкер сделала свое первое открытие — определила точное местоположение живых часов. Давайте послушаем, что она сама говорит о своем открытии: «Из ранее проведенных мною экспериментов, — объясняет она, — я знала, что ритм двигательной активности таракана зависит от присутствия в крови или тканях животного некоторого секрета. Задача сводилась к тому, чтобы проследить, откуда поступает этот секрет. Удаляя один за другим все известные эндокринные органы и проверяя, не остановятся ли при этом часы, я наконец — после года напряженной работы — выявила источник секрета. Им оказался подглоточный ганглий». Все насекомые имеют два «мозга»-ганглия, состоящих из комочка нервных клеток. Один из них находится в над-ротовой части головы, а второй лежит под пищеводом, потому и называется «подглоточным» ганглием. Он-то как раз и управляет самым непосредственным образом активностью насекомого[16]. Размер этого органа с булавочную головку, поэтому удалить его можно только под микроскопом. Рис. 43. Поперечный разрез подглоточного ганглия таракана. Видны четыре нейросекреторные клетки (1), связанные с ритмом двигательной активности. «Я потратила почти три года на прижигание мельчайших участков подглоточного ганглия высокочастотным каутером, пока не нашла наконец четыре нейросекреторных клетки, которые играют важную роль в поддержании ритма двигательной активности[17]. Поскольку эндокринные органы можно пересаживать в кровоток других тараканов, я смогла убедиться, что эти клетки действительно ответственны за выделение гормона в определенные промежутки времени. Сохранение тараканами ритмики не зависело от целостности нервных связей». Теперь она знала, где находятся у таракана его часы. Но что заставляет их работать? Можно ли приписать этим клеткам роль механизма, регулирующего ход ритма? Один из способов узнать, как работает тот или иной механизм, заключается в том, чтобы разрегулировать его и посмотреть, что из этого выйдет. Но живые часы трудно разрегулировать. Необходимо найти физиологический способ нарушения их ритма. Оставалось подвергнуть животное одновременному действию двух часов, не совпадающих друг с другом по фазе. Это должно было, по мнению Харкер, оказать на животное такое действие, как если бы его часы заработали неверно. Эксперимент был исключительно долгим, и проводился в три этапа. Сначала надо было выяснить, будут ли работать пересаженные часы, и если да, то будет ли новый хозяин реагировать на время, указываемое ими. Иными словами, можно ли восстановить чувство времени у аритмичного таракана с помощью часов, пересаженных из организма ритмически активного таракана? С этой целью Харкер соединила двух тараканов, поместив одного из них на другом. Нижний, аритмичный таракан мог двигаться совершенно свободно. У верхнего, с четким нормальным суточным ритмом, Харкер удалила ноги, кроме того, она так закрепила его тело, чтобы оно оставалось совершенно неподвижным. Взаимосвязь между насекомыми была возможна только через кровоток. В этих условиях нижний таракан немедленно принял ритм верхнего и начал бегать по его расписанию; следовательно, он отвечал на сигналы, поступающие в его организм через кровоток. На следующем этапе исследований Харкер пересаживала в брюшко аритмичного обезглавленного таракана подглоточный ганглий нормального насекомого. Активность животного с пересаженным ганглием становилась ритмичной, этот ритм по фазе соответствовал ритму таракана-донора и сохранялся в течение нескольких дней. Таким образом, стало совершенно ясно, что даже нарушение нервных связей в организме таракана не мешает нейросекреторным клеткам подглоточного ганглия секретировать в определенном ритме. Заключительный этап эксперимента состоял в том, чтобы полностью вывести из равновесия часовой механизм насекомого. Но прежде попытаемся разобраться в следующем. Если тараканов поместить в обратный цикл суточного чередования света и темноты, они в конце концов заучивают его и начинают бегать на рассвете, когда свет выключают, и успокаиваются вечером, когда его включают. Иначе говоря, в Англии они бегают по новозеландскому времени. Поэтому для того, чтобы подвергнуть одно животное действию сразу двух часов, расходящихся по фазе, логично пересадить нейросекреторные клетки новозеландских тараканов кембриджским. Но сначала Харкер должна была выполнить обычный контрольный эксперимент. Можно ли вообще пересадить единичные клетки одного таракана другому? Харкер сделала это, естественно, сначала на тараканах с нормальным циклом суточной активности, обнаружив при этом, что проведенная ею операция не причиняла им вреда. С донорскими часами, которые работали так же, как их собственные, насекомые вели себя нормально. Наступило время для решающего эксперимента. Харкер взяла нормальных, кембриджских тараканов и пересадила им «часовые» клетки от тараканов, которые были активны по новозеландскому времени. Что же случилось с насекомыми? Одни клетки говорили сбитым с толку животным, что сейчас день, а другие утверждали, что наступила ночь. Тараканы подверглись настолько сильному внутреннему потрясению, что у них катастрофически быстро развились опухоли в кишечнике и они погибли. Почему двое часов, работающих вразнобой, вызвали столь сильное потрясение в организме животных? Почему такой стресс привел к развитию опухолей? И это ли было причиной их возникновения? Если события следуют одно за другим, это вовсе не значит, что одно из них является следствием другого. Проблема установления причинных связей является одной из наиболее трудных в биологии. А получить полный ответ на то, что происходит в организме при сбившихся с ритма часах, еще труднее, поскольку нужны аналогичные эксперименты с другими животными. Но этого пока сделать нельзя, поскольку ни в каком другом животном, кроме таракана, местоположение часов еще не обнаружено. Правда, по мнению Харкер, несколько ученых, работающих с млекопитающими, уже подошли к успешному разрешению этой задачи. Делая обзор работы Харкер, Клаудсли-Томпсон сказал: «(Ее) наблюдения за тем, как у нормальных тараканов развиваются опухоли средней кишки после пересадки им подглоточных ганглиев от насекомых, содержавшихся при обращенном режиме освещения, могут оказаться крайне важными для изучения болезней, которые возникают у человека в стрессовых ситуациях». Овация, которую устроили Дженит Харкер участники симпозиума в Колд-Спринг-Харборе, была не единственной реакцией ученых на ее работу. Вполне естественно, что многие биологи в самых разных странах мира попытались воспроизвести ее результаты. Но это удалось далеко не всем, поэтому среди них нашлись и такие, которые поставили под сомнение достоверность ее данных. Харкер ответила тем, что, повторив свои эксперименты, воспроизвела прежние результаты. Вот как оценивает исследования Дженит Харкер биолог Е. Мак-Робби, хорошо знакомая с ее многолетней работой:
Наверняка пройдет еще немало времени, прежде чем биологи полностью примут и эту часть исследований Харкер. Однако, если мы правильно представляем себе общий ход развития науки, ее работа получит высокую оценку. Примечания:[16] Практически все более поздние исследования, проводившиеся в США, Японии, СССР и ГДР, показали, что центром ритма является так называемый центральный отдел основного мозга Подглоточный же ганглий играет вспомогательную, проводящую роль. — Прим. ред. [17] Нейросекреторные клетки выполняют двоякую функцию: проводят нервные импульсы и выделяют гормон. |
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|