|
||||
|
27. Сложные суждения. Образование сложных суждений Понятие сложных суждений неразрывно связано с конъюнкцией, дизъюнкцией, импликацией, эквиваленцией и отрицанием. Это так называемые логические связки. Они используются в качестве объединяющего звена, привязывающего одно простое суждение к другому. Именно так образуются сложные суждения. То есть сложные суждения – это суждения, созданные из двух простых. Конъюнкция (a^b) – это способ связи простых суждений в сложные, при котором истинность полученного суждения напрямую зависит от истинности составных. Истинность таких суждений достигается только тогда, когда оба простых суждения (и a, и b) так же истинны. Если хотя бы одно из данных суждений ложно, то ложным следует признать и образованное из них новое, сложное суждение. Например, в суждении «Этот автомобиль очень качественный (a) и пробежал всего десять тысяч метров (b)» истинность зависит как от его правой стороны, так и от левой. Если оба простых суждения истинны, то истинно и сложное, образованное из них. В противном случае (если хотя бы одно из простых суждений ложно) оно является ложным. Дизъюнкция (a Ъ b) бывает строгой и нестрогой. Отличие между этими двумя видами дизъюнкции состоит в том, что при нестрогом виде члены ее не исключают друг друга. Примером нестрогой дизъюнкции может быть: «Для получения заготовки деталь можно довести на станке (a) или предварительно обработать напильником (b)». Очевидно, что здесь а не исключает b и наоборот. Истинность подобного сложного суждения зависит от истинности его членов следующим образом: если ложны оба члена, ложным признается и образованное при их посредстве дизъюнктивное суждение. Однако, если ложно только одно простое суждение, такая дизъюнкция признается истинной. Эквивалентнция характеризуется тем, что образованное сложное суждение истинно только в тех случаях, когда истинны оба простых суждения, входящих в его состав, и ложно при ложности обоих этих суждений. В буквенном выражении эквивалентность выглядит как a є b. При отрицании суждения, отображающееся как a, истинно тогда, когда ложно отрицаемое понятие. Это связано с тем, что отрицание и отрицаемое простое суждение не только противоречат, но и исключают (отрицают) друг друга. Таким образом, получается, что, когда истинно понятие a, ложно понятие a. И наоборот, если ложно a, то отрицающее его a является истинным. Импликация (a ® b) истинна во всех случаях, кроме одного. Другими словами, если оба входящих в импликацию простых суждения истинны или ложны либо если ложно суждение a, импликация истинна. Однако при ложности суждения b ложным становится и сама импликация. Это можно рассмотреть на примере: «Мы бросим исправный патрон в костер (a), он взорвется (b)». Очевидно, что если первое суждение верно, то верно и второе, так как взрыв патрона, брошенного в костер, произойдет с неизбежностью. |
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|