Онлайн библиотека PLAM.RU


  • § 3.1 Магнитная модель атома и принцип Ритца
  • § 3.2 Спектры атомов и атомные модели
  • § 3.3 Строение атомов и периодический закон Менделеева
  • § 3.4 Спектры щелочных металлов, сложных атомов и молекул
  • § 3.5 Эффекты Зеемана, Штарка и грависмещение частоты
  • § 3.6 Строение ядер
  • § 3.7 Ядерные спектры и эффект Мёссбауэра
  • § 3.8 Состав и масса элементарных частиц
  • § 3.9 Кристаллическое строение элементарных частиц и их распады
  • § 3.1 °Cистематизация и периодический закон элементарных частиц
  • § 3.11 Частицы и античастицы, симметрия и асимметрия
  • § 3.12 Природа ядерных сил
  • § 3.13 Ядерные реакции и дефект массы
  • § 3.14 Гипотеза индуцированных распадов ядер и частиц
  • § 3.15 Загадка нейтрино и слабого взаимодействия
  • § 3.16 Единая теория взаимодействий, или Великое объединение
  • § 3.17 Проверка БТР с помощью ядерной физики
  • § 3.18 Строение электронов и позитронов
  • § 3.19 Спин и квантование магнитного момента атома
  • § 3.20 Реоны, ареоны и плюс — минус масса
  • § 3.21 Эфир и реоны
  • Часть 3

    МИКРОМИР ПО РИТЦУ

    Всю, самоё по себе, составляют природу две вещи:

    Это, во-первых, тела, во-вторых же, пустое пространство,

    Где пребывают они и двигаться могут различно…

    Дальше, тела иль вещей представляют собою начала,

    Или они состоят из стеченья частиц изначальных.

    (Тит Лукреций Кар, "О природе вещей" [77])

    Ключ к загадкам материи, как поняли ещё древнегреческие атомисты, спрятан в недрах микромира, — на нижних этажах мироздания, иерархическую систему которого часто сравнивают с высотным зданием. На его верхних, заоблачных этажах расположен мегамир, рассмотренный в предыдущей части, — Вселенная. Ниже — галактические скопления, галактики, затем звёздные и планетные системы, наконец, сами звёзды, планеты и спутники. Возле самой земли лежат этажи макромира, — мира привычных нам вещей и масштабов: от океанов и континентов до мельчайших кристаллов и организмов. Спускаясь глубже, мы вступим в тайные чертоги подвальных этажей, в область микромира, — мира молекул, атомов и элементарных частиц. И здесь тоже много уровней. Эти, скрытые под поверхностью уровни и переходы меж ними, мы и рассмотрим в данной части.

    Этаж молекул и атомов, иногда даже различимых в электронный микроскоп, знаком всем. Под ним лежит этаж субатомного мира, — мира элементарных частиц, каждая из которых заметно легче атома средней величины. Из частиц, масса, а, значит, и реальность которых надёжно установлена, наименьшей оказывается электрон. Все частицы, которые легче его и которые назовём "субэлектронными", образуют следующий вглубь этаж микромира. К таким частицам можно пока отнести реоны и ареоны. Итак, мы достигли нижнего из доступных пока этажей мироздания (глубже — неведомая бездна). Далее покажем, как на фундаменте этого этажа возводятся все последующие.

    К несчастью, получилось так, что если мегамир описывают с позиций теории относительности, то микромир — с позиций другой неклассической теории — квантовой механики, привлекая порой и СТО. Здесь, так же как в космосе, бросается в глаза искусственность неклассических концепций. Подобно тому, как в астрономии Птолемея-Аристотеля для описания движений планет и звёзд были умозрительно введены многочисленные сферы, эпициклы, так же и для описания атомных планетарных систем квантовая теория совершенно произвольно вводит наборы квантовых чисел, крутящихся электронных сфер-оболочек, искусственно подобранных таким образом, чтобы описать состояние электронов в атоме. Но складывается впечатление, что и в микромире можно отыскать более рациональное устройство для атомов и частиц, на основании классических законов и моделей, далеко ещё не исчерпавших себя, особенно если говорить о БТР. Не случайно, именно в микромире, во владениях физики высоких энергий, такое широкое хождение имеет баллистическая терминология: бомбардировка образцов, выстрелы и взрывы частиц с отдачей, кобальтовые пушки и ядра, мишени и ускорители, уподобляемые мощным арторудиям, как по своему назначению, так и силе, размерам. Недаром, гигантский циклотрон в Дубне даже назвали Царь-пушкой.

    Действительно, именно классическая наука и основанная на ней баллистическая теория оказывается справедлива и эффективна не только при объяснении явлений Космоса, но и в микромире, в том числе, при изучении строения атома, элементарных частиц, ядерной энергии и аннигиляции. Лишь излишняя расторопность заставила учёных, за неимением лучшего, принять в этой области теорию относительности и квантовую механику. Но, как говорится: "поспешишь — людей насмешишь", — все эти неклассические теории на поверку оказываются ошибочными, а, взамен им, есть гораздо более естественные и точные классические концепции. Ниже проиллюстрируем эффективность работы классической БТР в микромире на конкретных примерах.

    § 3.1 Магнитная модель атома и принцип Ритца

    Напрашивается гипотеза, что колебания в сериальных спектрах создаются чисто магнитными силами. Далее будет показано, что это позволяет легко понять законы спектральных серий и аномальные эффекты Зеемана

    (Вальтер Ритц, "Магнитные атомные поля и сериальные спектры", 1908 г. [50])

    Вскоре после открытия электромагнитной природы света и постройки первых излучателей и приёмников радиоволн, учёные всерьёз задумались над устройством природных излучателей света — атомов. В первой модели, предложенной Дж. Томсоном, атом предстал в виде антенны, типа металлического шарика, испускающего излучение при колебаниях электронов, вкраплённых в атом, как сливы — в пудинг. Потом пришла планетарная модель атома Резерфорда, где электроны обращались вокруг заряженного ядра, словно планеты. Но такой атом нестабилен: снующие по орбитам электроны, излучая энергию, падали бы на ядро. Этот недостаток устранила квантовая модель атома Бора, — ученика Резерфорда, но такой ценой, которая и до сих пор побуждает многих искать более рационального устройства атомному мирку. Предлагают вернуться и к модели пудинга, и к планетарной. Но, оказывается, существует и третья классическая модель атома — магнитная, предложенная в 1908 г. В. Ритцем.

    Собственно говоря, именно эта модель и позволила впервые найти весь спектр частот, излучаемых атомом водорода, причём столь оригинальным путём, что он и сегодня заслуживает внимания, как показано в замечательной статье [50]. Ритц не применял квантовых идей: электромагнитные волны в его модели генерировали не абстрактные квантовые переходы, а классические колебания электронов. Ещё до Резерфорда Ритц понял, что движением электрона в атоме управляет некий центральный механизм, остов, скелет атома, называемый ядром. Но Ритц, в отличие от Резерфорда, догадался, что управление это осуществляют не электрические, а магнитные силы, за что его модель атома и была названа "магнитной".

    Мы привыкли считать, что электроны в атоме движутся по орбитам — под действием электрического притяжения ядра, забывая, что сами на практике, — в ускорителях частиц, плазменных установках и индукционных печах — задаём круговые движения электронов с помощью магнитных полей. В своей работе 1908 г. "Атомные магнитные поля и спектральные серии" Ритц убедительно показал, что только силами магнитной природы можно объяснить спектры излучения атомов. Согласно ему, магнитное поле атома создано набором последовательно соединённых элементарных магнитиков стандартного размера a, образующих вытянутый магнитный стержень (Рис. 94). Вместо магнитов можно взять витки с током, составляющие катушку индуктивности, соленоид с постоянным шагом витка a. Как показал Ритц, в зависимости от числа магнитов (витков) стержень создаёт такие магнитные поля, в которых электрон должен колебаться с теми частотами, что были найдены в спектре атома водорода.

    Рис. 94. Магнитная ось, набранная из магнитов, управляет полётом электронов.


    При всей кажущейся наивности представления атома в виде некоего прибора (гибрида циклотрона и магнитной антенны), модель Ритца не только верно описала водородный спектр и эффект Зеемана, но и предсказала новые спектральные серии водорода и других элементов, поздней действительно открытые. Но трагическая ранняя гибель Ритца в 1909 г., спустя год после публикации его баллистической теории и модели атома, позволила о них забыть, хотя открытыми с их помощью принципами учёные не побрезговали и пользуются ими до сих пор. В свете открытий ушедшего столетия, которое не внесло ясности в квантовую модель атома, а лишь запутало её, модель атома Ритца обретает новое звучание и смысл.

    Так, открыли, что у каждого электрона есть стандартный магнитный момент ?, наделяющий электрон свойствами элементарного магнитика. Тем же магнитным моментом ? обладает и открытый в 1932 г. антиэлектрон, — позитрон. Представим теперь, что позитрон соединился с электроном, и этот диполь стал одним концом притягивать электроны, а другим — позитроны. В итоге, электроны и позитроны, последовательно цепляясь друг за друга паровозиком, могут сливаться в протяжённые прямые цепи, в которых все магнитики (магнитные моменты) электронов и позитронов ориентированны одинаково. Расстояния между их центрами окажутся постоянными, одинаковыми: порядка размера электрона a (Рис. 95). Как было показано (§ 1.16), при контакте электронов с позитронами они вовсе не уничтожаются, а просто слипаются в нейтральную частицу, оказываясь разделены расстоянием, равным классическому радиусу электрона.

    Рис. 95. Магнитный момент электрона как результат вращения. Слияние электронов с позитронами в цепочки типа линейных молекул силикона и игольчатых кристаллов.


    Итак, магнитные стержни, оси, набранные из элементарных магнитиков, которые Ритц только предполагал, в принципе могут вырастать сами, подобно кристаллам соли из чередующихся ионов Na+ и Cl-, или линейным молекулам полимеров, построенным из тысяч одинаковых звеньев, к примеру, — из чередующихся атомов Si и O (силикон). Стержни, содержащие равное число электронов и позитронов, не имели бы заряда, но породили бы заметное магнитное поле. Поэтому, оказавшийся возле стержня электрон не был бы ни отторгнут, ни притянут, но мог бы совершать в магнитном поле стержня круговые движения возле точки равновесия с частотой f, не зависящей от его скорости V и радиуса орбиты r (Рис. 94). В магнитном поле с индукцией B на электрон с зарядом e и массой M действует сила Лоренца F=eVB, заставляющая его двигаться по окружности с центростремительным ускорением ar=V2/r. Поскольку Mar=F, имеем MV2/r=eVB, откуда угловая скорость электрона 2?f=V/r=Be/M. То есть, частота f=Be/2?M обращения электрона, равная частоте излучаемого им света, зависит лишь от индукции поля B, поскольку величина e/2?M постоянна.

    Однако, спектры излучения атомов состоят из дискретного ряда частот. Значит, и поле B может принимать лишь определённые значения. Это заставило Ритца предположить, что электрон способен занимать в атоме лишь некоторые устойчивые положения, каждому из которых присуще своё значение поля B, задаваемое расстоянием электрона до стержня. Эту мысль о наличии в атоме устойчивых положений и орбит электрона, Ритц, в отличие от Бора, развивал в рамках классического, а не квантового подхода. Он считал, что раз стандартны расстояния и размеры a магнитов, то тем же расстоянием a должны быть отделены и возможные, разрешённые положения электрона — узлы 1, 2, 3…, где он способен пребывать (Рис. 94).

    Именно так и вёл бы себя электрон возле электрон-позитронного стержня, который за счёт неравномерного (дискретного) распределения зарядов создаёт небольшое продольное электрическое поле. Поэтому, где бы ни находился электрон, он всегда стремится встать против положительного позитрона, а возникающая при смещении электрона продольная сила возвращает его на место (Рис. 96). То есть, электрон способен устойчиво занимать положения — лишь напротив позитронов, и может "прыгать" вдоль стержня только на расстояние 2a.

    Рис. 96. Устойчивые (1, 2, 3) и неустойчивые (4, 5) положения электрона возле цепочки.


    Но смещение электрона вдоль стержня не влияет на величину магнитного поля. Да и Ритц считал, что у электрона кратно а меняется расстояние до магнита. Поэтому, приходим к выводу, что в атоме не один, а два стержня, две магнитных оси, соединённых перпендикулярно, наподобие перекладин креста (Рис. 97). Электрон, размещаясь против позитронов каждой оси, должен находиться в одном из узлов сетки, образованной линиями уровня позитронов, и его расстояние до каждого стержня будет кратно 2a. Потому, и поле B меняется прерывисто. Итак, в крестовой магнитной модели атома электрон и впрямь может занимать лишь некоторые устойчивые положения, возле которых и колеблется в магнитном поле крестовины. И, что очень важно, эта дискретность вводится в рамках классической физики. Подробнее о причинах устойчивости таких положений электронов расскажем далее (§ 3.2, § 4.14).

    Рис. 97. Сетка и узлы, в которых могут находиться электроны в крестовине.


    Крестовины могут нарастать так же естественно, как отдельные стержни. Крест мог бы образоваться из двух "слипшихся" стержней. Но, скорее, электрон-позитронные цепочки, стержни, оси и кресты растут, "кристаллизуются" от неких центров, ядер, подобно тому, как это происходит с настоящими кристаллами, дендритами, и, особенно, — снежинками, симметрично нарастающими от неких центров и ядер кристаллизации. Этими центрами могут быть ядра атомов, их протоны и нейтроны. Тем более, что они, как покажем (§ 3.9), могут содержать тысячи позитронов и электронов; в нейтроне их поровну, а у протона позитронов на один больше. Именно ядра могут поставлять необходимые для роста крестовины частицы.

    При "кристаллизации" креста, как и при росте поликристаллов железа, магнитные моменты частиц поначалу ориентируются случайным образом. Но, если в одном стержне случайно окажется чуть больше частиц с моментом, направленным вверх, то его магнитное поле заставит некоторые частицы второго стержня повернуться так, чтобы их моменты, ориентируясь вдоль линий поля, направились вниз. Тогда, и этот стержень создаст поле, в свою очередь побуждающее больше частиц первого стержня повернуться вверх. И так постепенно, путём подобной самоорганизации, магнитные моменты обоих стержней упорядочатся, так что первый стержень образует в плоскости креста поле направленное вниз, а второй — вверх (Рис. 98). В действительности, такая модель атома имеет много общего с первой моделью атома Дж. Дж. Томсона [49, 50], а также с реально наблюдаемой в опытах самоорганизацией магнитных систем. Ведь Томсон исходно строил как раз структурную модель атома, основываясь на ныне незаслуженно забытых опытах с плавающими магнитами, выполненных А. Майером ещё в конце XIX в. [50].

    Эти опыты заключались в следующем [78]. В сосуде с водой плавали пробки, в которые были вставлены слегка выглядывавшие из них намагниченные иглы. Полярность видневшихся концов игл была на всех пробках одной и той же. Над этими пробками на высоте около 60 см располагался противоположным полюсом цилиндрический магнит, и иглы притягивались к магниту, одновременно отталкиваясь друг от друга. В итоге эти пробки самопроизвольно образовывали различные равновесные геометрические конфигурации. Если пробок было 3 или 4, то они располагались в вершинах правильного многоугольника. Если их было 6, то 5 пробок плавали в вершинах многоугольника, а шестая оказывалась в центре. Если же их было, к примеру, 29, то одна пробка опять-таки находилась в центре фигуры, а остальные располагались вокруг неё кольцами: в ближнем к центру кольце плавали 6, в следующих кольцах по мере удаления от центра соответственно 10 и 12. Поэтому Томсон решил, что похожий центральный магнитный механизм (ядро) задаёт размещение электронов в атоме, чем и объясняется электронно-оболочечная структура атома и правильная структура таблицы Менделеева (§ 3.3). Да и сам А. Майер считал, что его простой опыт может служить моделью строения атомов и молекул.

    Всё это очень близко к идеям Ритца, представлявшего атом в виде организующегося в правильную структуру набора магнитов с ядром, координирующим положения и движения электронов. Интересно, что и Томсон, ссылаясь на опыты Майера, считал основой атома некое ядро, центральный магнит, возле которого электроны занимают устойчивые положения и колеблются, каждый со своей характерной частотой, подобно поплавкам в опыте Майера при выводе их из равновесия. Эту ядерную гипотезу Томсона разовьёт поздней его ученик Э. Резерфорд, но уже — в рамках ошибочной планетарной модели атома, опрометчиво принятой физиками. Сходство взглядов Ритца и Томсона прослеживается ещё и в том, что Томсон, как физик-классик, поддерживал баллистический принцип [6, 93]. Интересно, что и другой известный специалист по баллистике и электромагнетизму, М.В. Остроградский, открывший теорему Остроградского-Гаусса в электростатике (§ 1.6), исследовал взаимодействие таких цепочек однотипных магнитов.

    Рис. 98. Самоупорядочивание структуры крестовины в процессе её нарастания и взаимодействия частиц.


    Рассмотрим теперь эту кристаллическую модель количественно и найдём магнитное поле крестовины, этого ядра атома. Поскольку каждую частицу в цепи можно уподобить витку с током I, магнитный момент которого Ia2=?, где a2 — площадь квадратного витка, то, будучи сложены вместе, витки дают то же поле, что у двух параллельных и противоположно направленных токов I (Рис. 99). Один ток, находящийся от точки S на расстоянии r1, создаст в ней поле

    B+=?0I/2?r1 (?0 — магнитная постоянная),

    а другой, удалённый уже на расстояние r1+a, генерирует противоположно направленное поле

    B=?0I/2?(r1+a).

    Их разность с учётом малости a даёт у первого стержня

    B1= ?0Ia/2?r12= ?0?/2?ar12.

    То же поле

    B2= ?0?/2?ar22,

    но направленное противоположно, создал бы на расстоянии r2 второй стержень (Рис. 100). В целом на электрон, расположенный на расстоянии r1=2ma от первого стержня и r2=2na — от второго, действует поле

    B= B2- B1= ?0?/8?a3(1/n2–1/m2),

    где n и m — произвольные целые числа 1, 2, 3…

    Рис. 99. Расчёт магнитного поля B одной из осей крестовины эквивалентной двум токам.


    Соответственно, частота колебаний электрона в таком поле и частота излучаемого им света

    f=Be/2?M=Rc(1/n2–1/m2),

    где постоянная R=e?0?/16?2ca3M. Подобную формулу Ритц и вывел в 1908 г., исходя из своей магнитной модели атома, и сформулировал на её основе комбинационный принцип, согласно которому весь набор частот, излучаемых атомом, можно получить, придавая разные целые значения величинам n и m, комбинируя их в разных сочетаниях. Так, Ритц первым нашёл весь спектр частот атома водорода, даваемый известной формулой f=Rc(1/n2–1/m2), где коэффициент R носит название постоянной Ридберга.

    Рис. 100. Два типа электронов в атоме: одни совершают малые колебания возле узлов, излучая свет; другие движутся по широким орбитам вокруг крестовины.


    Так, спектр водорода даётся формулой Ритца: атом излучает дискретный набор частот

    f=Rc(1/n2–1/m2),

    где R — постоянная Ридберга, c — скорость света, n и m — целые числа. Из модели Ритца вытекает, что

    R=h/16?2ca2M,

    где a — период, шаг электрон-позитронной сетки атома, в узлах которой лежат генерирующие спектр заряды. Постоянная Планка h связана с магнитным моментом электрона ? и его радиусом r0 как

    h=e?0?/r0 [82].

    Реальную величину постоянной Ридберга даёт формула

    RH=e4M/8?02h3c,

    где M — масса электрона. Из условия R=RH найдём значение a=0,37·10–10 м, с точностью до коэффициента 0,71 совпадающее с боровским радиусом атома водорода a0=?0h2/?Me2=0,53·10–10 м. Итак, расстояния a между электронами в решётке — порядка радиуса атома a0. Это естественно: раз атом сложен из электронных слоёв, включающих до 30-ти частиц, то и размеры его — порядка межэлектронных интервалов (§ 3.3, § 4.14).

    Магнитная модель атома Ритца была первой и единственной классической моделью, позволившей объяснить спектр водорода. Поэтому, совершенно неясно, как могли современники Ритца, использовав результаты магнитной модели, саму её обойти стороной. Поражает простота и наглядность этой модели. Частота, с которой будет колебаться и излучать электрон, зависит исключительно от того, в каком из узлов координатной сетки атома он будет находиться. Причём числа m и n выражают просто номер узла, — как бы координату электрона вдоль соответствующей оси крестовины, — этой внутриатомной системы координат, крест которой и впрямь схож с антенной, радиомачтой и крестовыми цепочками радиотелескопов. В этой модели гармонично сочетаются магнитная модель Ритца и его же ранняя модель, изображавшая атом — плоской квадратной мембраной, с двукратно бесконечным числом узлов [50]. Именно спектры атомов, как понял Ритц, дают ключ к пониманию строения атома, атомного механизма. И Ритц первый правильно воспользовался этим ключом. Примечательно, что математическим аппаратом, развитым в рамках модели Ритца, физики до сих пор пользуются в квантовой механике [50, 82], при расчёте волноводов, в сечении которых, как на мембране, образуются прямоугольные ячейки узлов и пучностей колебаний электромагнитного поля [88]. Да и при построении квантовой модели атома Зоммерфельд и Бор неоднократно ссылались на результаты Ритца, впрочем, так и не приняв их классической основы [50]. А поздней, как отмечает М. Ельяшевич, успехи Ритца вообще стали замалчивать в научной литературе, проводя целенаправленную дискриминацию его классических идей.

    Модель атома Ритца не только объясняла спектр водорода, но и не имела пороков планетарной модели Резерфорда, созданной три года спустя, в 1911 г. Электрон, излучая на частоте f собственных колебаний в узле, теряет энергию и скорость V=2?rf, по мере убывания размаха r колебаний, но, при этом, не падает на ядро, как в планетарной модели, а просто замирает в своём узле. Когда атом, участвуя в хаотическом тепловом движении, столкнётся с другим атомом, то "взбалтывание" в нём электронов, как пассажиров в автобусе, снова придаст электрону в узле скорость. Поэтому, спектральные линии тем ярче, чем выше температура газа и чем интенсивней идёт возбуждение колебаний электронов в его атомах. Этот классический механизм колебаний и излучения атомных электронов, на строго заданных частотах, иллюстрирует пример ящика с подвешенными на пружинах разной жёсткости грузами, которые начинают вибрировать на собственных частотах при ударе по ящику, пока их колебания не затухнут, как у электронов в атоме.

    Поглощение света атомом — процесс, обратный излучению. Падающая электромагнитная волна, воздействуя на покоящийся в одном из узлов электрон, сможет вызвать заметные его колебания только в том случае, если её частота f совпадает с собственной частотой колебаний электрона в данном узле, то есть, — если имеется резонанс. Потому атом эффективно поглощает только те частоты, которые сам же излучает: спектры излучения и поглощения совпадают. Когда воздействие излучения на атомы вещества закончится, они ещё некоторое время пребывают в возбуждённом состоянии: их электроны, набравшие скорость и кружащие в своих узлах, ещё некоторое время продолжают излучать энергию, экспоненциально убывающую. Так магнитная модель объясняет люминесценцию и фосфоресценцию.

    Кроме электронов, колеблющихся возле устойчивых положений в узлах крестовины, в атомах встречаются и электроны, крутящиеся вокруг атома, удерживаемые его магнитным полем. Если первые (узловые) электроны ответственны за индивидуальные линейчатые спектры атомов, то вторые (внешние), не имея устойчивых орбит и положений, генерируют сплошной тепловой спектр атома (§ 4.1), а также проявляются в фотоэффекте (§ 4.3), эффекте Комптона (§ 4.7) и ряде других, где работает открытая Планком связь между частотой обращения электрона f и его энергией E=hf. Как покажем далее, такое соотношение тоже обусловлено структурой магнитного поля атома, которое захватывает внешние электроны (§ 3.3, § 4.3). Таким образом, атомы своим стройным чётким механизмом во многом напоминают часы, в которых разные зубчатые колёсики (разные электроны) вращаются со своими стандартными частотами. Эти частоты, как в формуле Ритца, связаны друг с другом через передаточные отношения, содержащие в числителе и знаменателе целочисленные коэффициенты (в часах заданные количеством периодично размещённых зубьев, а в атоме — электронов), а также через их разности (как в швейцарских часах с дифференциальным, планетарным механизмом). Есть в часах и колёсики-балансиры со спиральной пружиной, крутящиеся с переменной частотой, и в баллистической модели атома соответствующие внешним электронам, которые при закрутке в "атомной праще" то запасают, то отдают энергию и движутся по спирали. Выходит, вполне закономерно, что именно крутящийся электрон и атомный механизм стал основой для создания наиболее точных атомных часов, и что именно такой чёткий механизм искал в атоме швейцарец Вальтер Ритц, уроженец страны часовщиков.

    Ритц, используя открытую им модель атома, также легко объяснил, задолго до квантовой теории, все основные особенности эффекта Зеемана, в том числе и те, которые не позволяла понять планетарная модель атома. В самом деле, во внешнем магнитном поле магнитный момент атома установится вдоль линий поля. При этом, внешнее магнитное поле Bм, налагаясь на поле крестовины B, либо увеличивает, либо уменьшает его (Рис. 94). Поэтому, у одних электронов частота колебаний увеличится на ?f=eBм/2?M, а у других — уменьшится на ту же величину. В итоге, появятся спектральные линии, смещённые вправо и влево от основных.

    Итак, из классических моделей только модель атома Ритца объясняла спектральные закономерности. Правда, Ритцу пришлось для этого привлечь новые смелые идеи — об элементарных магнитах, о масштабе длины микромира (то, что теперь называют классическим радиусом электрона, равным радиусу действия ядерных сил). И XX век полностью подтвердил его предсказания: был открыт спин, магнитный момент электрона, ядро атома (тоже обладающее магнитным моментом), в физику вошло ядерное взаимодействие, задающее стандарт расстояний в ядре. Всё это характеризует Ритца как смелого мыслителя, как гениального прорицателя с мощнейшей научной интуицией, сумевшего одной только силой мысли проникнуть и в глубь атома, и в бездну космоса настолько далеко, что он опередил науку на сотню лет.

    Конечно, магнитная модель атома ещё несовершенна и требует доработки. Кроме спектра водорода, ей предстоит объяснить спектры других атомов, что тоже было отчасти сделано Ритцем (§ 3.4). В ней надо найти место протонам, нейтронам и электронам электронных оболочек атома. Последние, вероятно, тоже расположены в узлах крестовины, как в узлах кристаллической решётки (§ 3.3). Такое кристаллоподобное строение атома, постепенное заполнение электронами узлов по уровням n и m, позволяет естественно (не в пример квантмеху) объяснить периодичность свойств элементов. Всё это перекликается с идеями В. Мантурова [79], тоже представляющего ядра атомов в форме кристаллов, составленных из позитронов и электронов, разделённых стандартными промежутками. Кристаллические модели атома, в отличие от нестабильных динамических, показывают, что в рамках классической физики понять атомные и ядерные законы можно. А, постоянно внушаемая мысль о неизбежности квантмеха для микромира, — это миф и, даже, — обман, если учесть долгое замалчивание успехов магнитной модели атома, реализованной Ритцем целиком в рамках классической механики.

    § 3.2 Спектры атомов и атомные модели

    Я остался сторонником механистических воззрений XIX столетия и думаю и знаю, что можно объяснить, например, спектральные линии (пока только водорода) без теории Бора, одной ньютоновской механикой.

    (К.Э. Циолковский [69])

    Вальтер Ритц не раз указывал, что ключом к пониманию устройства атома должны стать атомные спектры. И, как было показано выше, Ритц действительно пришёл на основе найденных им спектральных закономерностей к классической модели строения атома. Речь идёт, конечно, не о планетарной модели атома Резерфорда, заведшей в тупик, а о куда менее известной — классической магнитной модели атома, предложенной В. Ритцем в 1908 г. [50] (§ 3.1). По идее Ритца, именно пространственная структура ядра является тем программным центром, который управляет жизнью атома и поведением в нём электронов, подобно тому, как жизнь биологической клетки задана строением клеточного ядра и информационной молекулой ДНК. В магнитной модели ядро управляет полётом электронов посредством магнитных, а не электрических сил. И это естественно: в природе и технике круговое движение электронов создаёт именно магнитная сила, и лишь она объясняет стабильность атома.

    Будь движение электронов, как в планетарной модели, вызвано силой Кулона, они неслись бы по орбитам со скоростями порядка скорости света c и мигом (за 10–10 с) падали бы на ядро, растратив энергию на излучение. Магнитные силы меньше электрических и позволяют электронам кружиться гораздо медленней и дольше терять энергию. В самом деле, из магнитной модели, как покажем (§ 3.3, § 4.3), следует открытая Планком связь энергии электрона на орбите

    E=MV2/2=hf,

    с частотой его обращения f, где h — постоянная Планка. Сократив на MV/2, найдём

    V=2hf/MV=h/?Mr,

    где r — радиус орбиты электрона. Если r порядка радиуса атома (10–10 м), то V=2300 км/с. Эта скорость, обычная для электронов в лучевых трубках и лампах, на два порядка меньше c. Тогда, связанное с вращением ускорение a=V2/r меньше уже на четыре порядка, радиационное торможение — мало, и электрон на орбите атома живёт долго. Если ж учесть, что в магнитном поле вся энергия электрона чисто кинетическая E=MV2/2=h2/2?2Mr2, то при её спаде электрон уже не падает на ядро, а отдаляется от него, наращивая r орбиты в атоме неограниченно долго.

    Ядро такого атома мы изображали, по концепции Ритца, в виде двух цепочек из чередующихся электронов и позитронов (так же и информационная основа клеточного ядра — двойная цепочка ДНК из чередующихся нуклеотидов). Однако, считается, что электроны и позитроны при контакте исчезают (аннигилируют) с выделением энергии, поскольку после не находят ни электронов, ни позитронов. Но это — лишь иллюзия. Ведь и при взрыве бомбы горючее соединяется с окислителем, резко выделяя энергию. И, хотя здесь тоже в итоге не остаётся ни горючего, ни окислителя, никто не скажет, что они исчезли, обратившись в энергию. Атомы окислителя лишь соединились с атомами горючего, образовав невидимый газ, расширившийся взрывом. Так же, и при контакте позитрона с электроном частицы не исчезают, а, слившись в пару, не имеющую заряда, перестают регистрироваться приборами (§ 1.16). Из таких парных сочетаний электронов и позитронов, судя по всему, и образованы протон, нейтрон и другие "элементарные" частицы, как предполагал ещё Ф. Ленард (§ 3.3), и как позднее обосновал В. Мантуров [79]. Кстати, по квантовой механике электрон и позитрон могли б образовать позитроний, аналогичный атому водорода. Но, на деле, позитроний, в отличие от атомов, нестабилен: кружащиеся частицы сливаются как раз за 10–10 с [82], растратив энергию, чем доказывают порочность планетарной модели, даже в квантовом её варианте. Ведь позитрон, играющий роль ядра, не имеет его структуры и соответствующей конфигурации магнитного поля.

    Что же собой представляет ядро атома водорода, иначе говоря, — протон, и как создаётся его структура? Чуть выше, следуя идее Ритца, упрощённо представили ядро в форме крестовины из чередующихся электронов e- и позитронов e+, сравнивая его с кристаллом соли, так же сложенным из периодично размещённых заряженных частиц. Но, поскольку реальные кристаллы, за исключением снежинок, имеют вид многогранников, — параллелепипедов и пирамидок с плоскими гранями, то логичней и проще представлять ядро водорода в виде куба или параллелепипеда, скажем, в виде двойного квадратного слоя частиц (Рис. 101). Именно в виде таких кристаллов правильной формы, как увидим в дальнейшем, логичней всего представлять частицы, в том числе протон, образующий ядро водорода (§ 3.9). Поскольку, как было выяснено выше, масса — это величина аддитивная (§ 1.17), то масса ядра должна равняться сумме масс образующих его электронов и позитронов. Раз протон имеет вес 1836 электронов, то его можно условно изобразить, как параллелепипед с размерами 2х30х30 частиц, или, для точности, 2х27х34=1836. Отметим, что ещё Дж. Томсон, открывший электрон и построивший первую модель атома (см. его книгу "Электричество и материя"), предлагал атом водорода и его массу считать сложенными примерно из тысячи электронов и того же числа положительно заряженных частиц (позитронов) [139].

    Рис. 101. Возможная структура протона или нейтрона в ядре и схема генерации спектра.


    В каждом из слоёв магнитные моменты частиц ориентируются вдоль диагонали слоя, минимизируя энергию взаимодействия. В верхнем и нижнем слое моменты направлены противоположно (Рис. 102.а), образуя структуру магнитного поля, как у крестовины. В этом легко убедиться, представив систему набором магнитных диполей: в эквивалентной схеме (Рис. 101, Рис. 102) только края квадратов создают магнитные поля (они перпендикулярны плоскости слоя и смотрят вверх и вниз). Позитроны e+ и электроны e- расположены в шахматном порядке, подобно ионам Na+ и Cl- в кристалле соли. В атоме водорода электрон прилипает к этой "магнитной шахматной доске", располагаясь точно над позитронами, будучи притянут ими, а при малых колебаниях в магнитном поле ядра он излучает свет. При этом электрон, словно чёрные шашки в игре, дискретно прыгает, шагает по этой шахматной доске, замирая на клетках белого цвета, отвечающих позитронам, отчего дискретно меняется величина магнитного поля и частота колебаний электрона в нём. Поскольку структура магнитного поля получается той же, что и в крестовом атоме, то частота f колебаний и излучения электрона принимает такой же дискретный ряд значений f=Rc(1/n2–1/m2), где n и m — целочисленные координаты узла, в котором сидит электрон (Рис. 101).

    Рис. 102. Строение протонов в форме квадратов и треугольников и ориентация в них магнитных моментов.


    Можно представить протон и в виде одинарного квадратного слоя частиц. Складываясь вдоль диагонали пополам, он образует двойной треугольный слой — со структурой поля крестовины и тем же спектром частот. Этот парный треугольник может быть и прямоугольным и равносторонним, тоже дающим водородный спектр (Рис. 102). Кроме водородного, модель позволяет рассчитать и другие атомы. Рассмотрим атом с атомным номером Z — содержащим Z протонов. Квадраты протонов могут, как в сэндвиче, склеиться слоями, если над позитронами одного слоя окажутся электроны другого. Их взаимное притяжение и даёт те ядерные силы, что противостоят отталкиванию протонов и быстро (по экспоненте § 3.12) спадают с удалением [79]. Когда такая "стопка" протонов сложится вдоль диагонали пополам, получится слоёный уголок. В его верхней и нижней части магнитные моменты смотрят в разные стороны вдоль линии сгиба (Рис. 103).

    Рис. 103. Склеивание протонов в слоёный уголок с увеличенным в Z2 раз полем B. Выше эквивалентная схема из магнитных диполей ?.


    Здесь магнитный момент единицы длины a окажется уже не ?, а ?Z2: он найдётся как сумма магнитных моментов отдельных магнитных диполей, образующих арифметическую прогрессию 1?+ 3?+ 5?+…+(2Z–1)?=?Z2. Соответственно, магнитное поле и частота колебаний в нём электрона вырастет пропорционально Z2: f=RZ2c(1/n2–1/m2). И точно, у ионизованных водородоподобных атомов He+, Li2+, Be3+, B4+, C5+, лишённых всех электронов кроме одного, спектры подчиняются этой формуле, дающей спектр водорода с увеличенным в Z2 раз масштабом. Присутствие остальных электронов привело бы к тому, что своим полем они бы исказили движение электрона, генерирующего спектр, и он приобрёл бы совсем иной характер, чем у водорода (§ 3.4). Впрочем, у многоэлектронных атомов с большим Z магнитное поле столь велико, что вносимые электронами искажения оказываются незначительны. Поэтому, для спектра излучения электронов, крутящихся в столь сильных полях с огромной частотой и генерирующих рентгеновское излучение, справедлив закон Мозли f=R(Z — b)2c(1/n2–1/m2), отличающийся от найденного лишь малой поправкой b, вызванной влиянием остальных электронов [49, 134].

    Возможно и другое, более простое объяснение изменению постоянной Ридберга R с изменением атомного номера и заряда ядра Z. Возможно, пропорционально росту заряда ядра Z уменьшается равновесное расстояние a=a0/Z между электронами и позитронами и, соответственно, увеличивается R=h/16?2ca2M=RHZ2. Это было бы возможно, если б это равновесное расстояние задавалось, например, амплитудой колебаний электронов возле ядра, или если б оно задавалось магнитным моментом и зарядом ядра (в сумме с моментом и зарядом окружающих его электронов внутренних оболочек), так же, как расстояние между магнитными поплавками в опытах А. Майера определялось магнитным моментом центрального магнита (ядра атома § 3.1). Такое изменение равновесного расстояния между электронами в электронных оболочках позволило бы также объяснить уменьшение размеров атомов при росте атомного номера в периодах таблицы Менделеева.

    В магнитном поле атома электроны могут совершать два типа "колебаний". Одни электроны кружатся с жёстко заданными частотами возле узлов атома, генерируя дискретный спектр излучения. Такие электроны будем называть "внутренними", или "узловыми". Другие же, словно в магнитной ловушке, кружатся с непрерывно меняющейся частотой f вокруг самого атома, обладая энергией E=hf. Эти электроны, которые назовём "внешними", или "орбитальными", создают сплошной (тепловой) спектр излучения и не занимают в атоме устойчивых положений, а кружатся в магнитном поле атомного остова (Рис. 107). Это внешнее магнитное поле уже не зависит от порядкового номера элемента и одинаково для всех атомов. Внешние электроны, пойманные в магнитную ловушку атома, порождают также фотоэффект и Комптон-эффект (§ 4.3, § 4.7). Такие электроны не задерживаются в атоме надолго, а регулярно, — от потерь энергии и схода с орбиты, покидают его и захватываются новыми атомами. В целом, атом — это своего рода комбинация разных приборов: магнитной ловушки, рупорной антенны, гиротрона, циклотрона, — преобразующих движение электронов в излучение и обратно. Так что, в атоме действуют обычные законы механики, вакуумной СВЧ-электроники и — совершенно нет квантовых, как отмечал ещё К.Э. Циолковский, тоже создавший чисто классическую модель атома, о которой, правда, ныне ничего не известно. Известно лишь, что с этой моделью, описанной в работе Циолковского "Гипотеза Бора и строение атома" был, вероятно, ознакомлен через А.Б. Шершевского А. Эйнштейн [69, с. 185]. Но это уже совершенно забытая история.

    Выходит, Циолковский был прав: классическими законами вполне можно объяснить спектры атомов, если использовать кристаллическую магнитную модель атома Ритца. Более того, спектры буквально кричат именно о такой чёткой модели. Идеально похожие для атомов одного элемента наборы спектральных линий с частотами, заданными точными соотношениями с целочисленными переменными, — разве это не удивительно? Столь чёткая структура линий может возникать лишь в кристаллоподобном атоме, где электроны, генерирующие спектр, занимают лишь некоторые устойчивые положения, отделённые одно от другого шагом дискретизации, равным периоду кристаллической электрон-позитронной решётки. Именно Вальтер Ритц, первым нашедший общую формулу для атомных спектров, показал, что атомный механизм генерации спектра обусловлен периодичным расположением частиц. Итак, дискретные атомные спектры подтверждают дискретную кристаллическую структуру атома.

    § 3.3 Строение атомов и периодический закон Менделеева

    Свойства простых тел, а также формы и свойства соединений элементов, находятся в периодической зависимости (или, выражаясь алгебраически, образуют периодическую функцию) от их атомных весов.

    (Д.И. Менделеев)

    Считается, что химические свойства атомов, характер движения и размещения в них электронов никак не связаны со строением атомных ядер. А, между тем, многое говорит о наличии такой связи. Её всячески замалчивают, поскольку она противоречит квантовой физике, и лишь классическая магнитокристаллическая модель атома Ритца открывает эту связь.

    В планетарной квантовой модели атома полагали, что на строение электронных оболочек атома влияет лишь заряд ядра, но не его структура. А какую же роль играет электричество, заряд ядра в магнитной модели атома? Если поле осей крестовины задаёт расположение электронов, то поле ядра — их число в атоме. В самом деле, положительный заряд ядра должен уравновешиваться отрицательным зарядом электронов, иначе заряженный атом будет отталкивать или притягивать электроны, пока не станет нейтральным. Но, хотя заряд ядра и определяет равновесное число электронов в атоме, — вовсе не он отвечает за их удержание там. Именно поэтому, существуют отрицательные ионы, — атомы с избытком электронов, невозможным по теории Бора. Ведь, если электроны удерживает электрическая сила, то как же сможет нейтральный атом удержать лишний электрон, а, тем более, — два или три? Даже поляризованному атому это не под силу. Но для магнитной модели анионы — не проблема. Нейтральный атом легко может удержать лишний электрон в одном из узлов сетки (§ 4.14). Для захвата многих электронов есть и другой механизм: магнитное поле крестовины, атомного остова. На избыточный внешний электрон, влетающий в атом, действует сила Лоренца, способная удержать его на орбите, даже при отталкивании внутренними электронами (Рис. 100).

    Рассмотрим теперь, как расположены внутренние электроны в атоме. По структурной модели атома, строение и заполнение электронных слоёв определяется строением ядра (остова атома), — не просто его зарядом, как в квантовой физике, а, именно, — пространственной структурой остова и конфигурацией полей. Она же задаёт периодичность свойств элементов. Напомним, что числа элементов в периодах таблицы Менделеева образуют следующий ряд: 2, 8, 8, 18, 18, 32, 32. Это удвоенные квадраты целых чисел k вида 2k2: 2=2·12, 8=2·22, 18=2·32, 32=2·42. Ещё задолго до теории атома Бора, многие учёные, — Дж. Томсон, Дж. Льюис, И. Ленгмюр, — поняли, что периоды связаны с последовательным заполнением электронами неких слоёв, уровней, оболочек в атоме [49]: в первом слое 2 места, во втором — 8 и т. д. Когда электроны полностью займут один слой, уровень, начинает заполняться следующий, открывая новый период, словно яичные ячейки, укладываемые по мере заполнения яйцами одна над другой, или пушечные ядра, складываемые пирамидой. У инертных газов, расположенных в конце периодов, слои целиком заполнены и потому крепко связывают электроны. Отсюда — химическая инертность этих, предельно совершенных, благородных газов.

    Но, по квантовой механике, ёмкости оболочек для периодов с 1-го по 7-й иные: 2, 8, 18, 32, 50, 72, 98, что не соответствует числу элементов в периодах. Поэтому, даже к концу периода оболочки остаются не заполнены, утрачивая свой смысл, ибо заполняются непоследовательно. Да и сама идея оболочек и способа их заполнения, заимствованная из классической модели атома Дж. Томсона, выглядит в квантовой механике весьма натянуто, хотя бы потому, что произвольно вводятся четыре квантовых числа, задаваемых искусственно введёнными правилами, ниоткуда не следующими и ничем не обоснованными. Поэтому, для уяснения природы электронных оболочек — обратимся к забытым идеям Джильберта Льюиса. Подобно Ритцу, он считал причиной атомных спектров способность электрона занимать в атоме различные равновесные положения, которым соответствуют свои частоты колебаний. А оболочки и число электронов в них Льюис связывал с наличием у атома определённой пространственной структуры, — некоего правильного геометрического объёма, послойно заполняемого электронами, занимающими, при переходе к новым периодам, новые уровни [49]. Функция ядра в том и состоит, чтобы задавать эту пространственную структуру, кристаллизуя вокруг себя электроны. Осталось найти тело, дающее нужную конфигурацию слоёв и числа электронов в них.

    Легко видеть, что этим телом должна быть бипирамида — две четырёхгранных пирамиды, вроде пирамид Хеопса, соединённых вершинами (Рис. 104). Эти пирамиды послойно от вершины заполняются электронами, как блоками реальных пирамид, или как упомянутые пирамиды из пушечных ядер. Уже то, что числа электронов в слоях — это удвоенные квадраты чисел 1, 2, 3, 4, должно говорить о том, что слои имеют форму постепенно растущих квадратов, — последовательных сечений пирамиды. Ну а то, что электронные слои, числа элементов в периодах — дублируются, означает, что пирамид этих — две. Они имеют общую вершину — слой с числом мест равным 2, потому-то он один и не дублируется. Интересно, что к подобной бипирамидальной форме ядра пришёл и В. Мантуров, но уже из соображений ядерной физики [79]. Более того, ещё в Древней Греции Платон предложил считать элементарные частицы, атомы, — имеющими вид многогранников, пирамидок (§ 5.3) [63]. Так же, и первый атомист, древний грек Демокрит, — предлагал считать атомы геометрическими телами, "формами", заполняемыми по семи уровням элементарными частицами, — амерами (электронами). Ломоносов, как основатель русской физики с химией и последователь древних атомистов, тоже представлял атомы каждого элемента в виде частиц стандартных масс, геометрических размеров и форм, считая атомы многогранниками, пирамидами с квадратным основанием (см. его диссертацию "О различии смешанных тел, состоящем в сцеплении корпускул"). Наконец, и сам Менделеев связывал открытую им периодическую зависимость свойств элементов от веса атомов — с их формой, пространственной структурой атома.

    Рис. 104. Бипирамидальная модель атома, схема расположения в нём семи электронных слоёв, их ёмкости и номера (отвечают номеру периода).


    Электроны в слоях должны, во избежание отталкивания, перемежаться расположенными в шахматном порядке позитронами, — теми самыми, которые, будучи в протонах избыточными, придают положительный заряд ядру (как увидим, можно обойтись и без позитронов, если отталкивание компенсируется притяжением к атомному остову или магнитным взаимодействием электронов, § 4.14). Тогда, в каждом слое будет поровну электронов и позитронов, а всего частиц: 2k2+2k2=(2k)2. То есть, любой слой — это квадрат со стороной в 2k частиц (если же исключаем присутствие позитронов в слое, то это будет квадрат со стороной в k частиц, где в каждой ячейке сидят по два электрона, связанные в пару магнитным притяжением). В крайних, 6-м и 7-м слоях, словно на шахматной доске, — как раз 8?8=64 места: 32 чёрных клетки — для электронов и 32 белых — для позитронов (Рис. 105). Слои уложены один над другим так, что над позитронами лежат электроны и наоборот (Рис. 106): чередование зарядов, как в ионных кристаллах той же соли NaCl. Легко понять, как задаётся эта структура слоёв. Ядро атома должно представлять собой два пирамидальных раструба, вроде рупорных антенн, соединённых вместе. В этих сдвоенных рупорах, как в кульках, и уложены слоями электроны, вперемежку с позитронами. Столь чёткая укладка электронов на каждом уровне вызвана периодичным размещением электронов и позитронов в опорных слоях. Электроны с позитронами уложены в слои, словно ионы в кристалле соли, — в шахматном порядке. Каждый электрон прилипает к слою возле позитрона. Таким образом, отрицательные электроны и их зеркальные античастицы-позитроны аналогичны чёрным и белым фигуркам шахмат или шашек, расположенным на отведённых им клетках шахматной доски-ядра (§ 5.2).

    Рис. 105. Схема электронных слоёв разной ёмкости и порядок их заполнения.


    Итак, электроны и позитроны — это тот стройматериал, из которого, словно снежинки, кристаллизуются ядра, атомные остовы. Но, если снежинки все разные, то ядра одного типа — идентичны, поскольку образованы равным числом частиц, одинаково выстроенных их же электрическими и магнитными полями. Как показал Ритц, частицы — это не только элементарные заряды, но и магнитики, слипающиеся единственным оптимальным способом, задающим минимум энергии. Именно так, и плавающие магниты в опытах Майера составляли всегда одни и те же правильные конфигурации (§ 3.1). Именно это стремление к минимуму энергии системы магнитных частиц (электронов, позитронов, протонов и нейтронов) и даёт ядро в форме двух четырёхгранных пирамид, соединённых вершинами. Этот двойной рупор, бипирамида в форме песочных часов, и задаёт все свойства атомов и ядер.

    Рис. 106. Целиком заполненные электронные слои в атомах инертных газов.


    В месте соединения рупоры имеют сквозное отверстие, по типу песочных часов. Через него, как песчинки, проходят электроны (Рис. 104). Там же расположен общий для пирамидок слой из двух позитронов и двух электронов. Бипирамида, её раструбы, — и будут ядром, — той структурой, что задаёт все свойства атома. При этом, наиболее массивная часть ядра сосредоточена в центре атома, где сходятся вершины двух пирамид и собраны все нуклоны. Отметим, что бипирамида легко получается из крестовой магнитной модели атома Ритца (§ 3.1), если соединить две крестовины, повёрнутые в пространстве на 90? вокруг биссектрисы их прямого угла. Ведь противоположные рёбра бипирамиды — как раз перпендикулярны друг другу, подобно магнитным стержням каждой крестовины. При этом, стенки раструбов (грани пирамид) образованы, вероятно, всё тем же строительным ядерным материалом: позитронами и электронами, составляющим частицы правильной формы (Рис. 102, Рис. 107). Так, частицы в форме прямых уголков (Рис. 103) могут входить в ядро в качестве перегородок, делящих пирамидальные полости пополам. В узлах на гранях и перегородках пирамид и размещаются электроны, генерирующие спектр атома. Энергия возбуждения атомов идёт на придание электрону колебаний и на вырывание его из слоя.

    Может удивить: как возникают столь сложные и правильные формы атомов и ядер (§ 3.6)? Но здесь не больше странного, чем в сложной и, при том, идентичной 3D-структуре одинаковых белковых молекул (скажем, белковых оболочек вирусов в виде икосаэдра), в замысловатой идеально правильной форме снежинок, в точном подобии и симметрии кристаллов. Общая причина — в упорядоченном выстраивании их частиц. Ещё Ритц говорил, что нельзя понять атомные законы, иначе как, допустив у атома и ядра сложную пространственную структуру, напоминающую с позиций современной химии структуру сложных ажурных органических молекул, типа белков и фуллеренов. В наш век нанотехнологий, структурной химии, изучающей трёхмерные каркасы молекул ДНК, нанотрубок и других высокомолекулярных соединений, ажурная структура самих атомов, составленных из многих электронов и прочих элементарных частиц, представляется вполне естественной.

    Рис. 107. Грани и перегородки атомного остова из электрон-позитронных слоёв в форме квадратов с треугольниками и два типа электронов: узловые и орбитальные.


    Выше видели, как электрон генерирует спектры атомов на электрон-позитронном уголке-треугольнике (§ 3.2). Таких треугольных граней достаточно в бипирамиде, — на них и сидят узловые электроны, генерирующие спектр. При этом каждый электрон генерирует излучение лишь одной частоты, отвечающей его положению в атоме и магнитному полю в данной точке. Поэтому, один атом не способен генерировать весь набор спектральных линий элемента: каждый генерирует свои линии и лишь большой коллектив атомов высвечивает весь спектр элемента. Возбуждение колебаний происходит, скажем, от столкновений атомов.

    Итак, атом — это кристалл: кристаллическое ядро, возле которого в правильном порядке уложены электроны. Само ядро составлено из протонов и нейтронов, в свою очередь, образованных электронами и позитронами. Поэтому, скелет, остов атома, называемый "атомным ядром", — это, в конечном счёте, кристаллический комплекс из упорядоченно расположенных электронов и позитронов, которых почти поровну, как поровну ионов Na+ и Cl— в кристалле соли NaCl. Отрицательно заряженные электроны соединяются с положительно заряженными позитронами и — наоборот, взаимно нейтрализуясь. И лишь небольшой избыток позитронов придаёт ядру положительный заряд.

    Заметим, что подобную модель строил ещё Ф. Ленард, считавший, что ядро имеет ажурную структуру [74] и образовано из "динамид", — попарно связанных элементарных отрицательных и положительных зарядов, — "электронов" и "позитронов", по-нынешнему. Масса атома пропорциональна числу образующих его динамид, поскольку складывается из их масс. Наличие в ядре в почти равной пропорции электронов и позитронов доказывают многие факты. Так, известно, что стабильны ядра с определённым соотношением числа протонов и нейтронов. При избытке протонов обычен ?+-распад: ядро покидают избыточные положительные позитроны, находящиеся в протонах. Если же протонов не хватает, то ядро испытывает ?-распад: ядро покидают избыточные электроны, а содержавшие их нейтроны становятся протонами. Как видим, число электронов и позитронов должно быть сбалансировано. Электрон с позитроном могут покинуть ядро и вместе, — при облучении гамма-лучами, вырывающими из ядра пару e+e. Как тут не вспомнить динамиды Ленарда — попарно связанные заряды в ядрах? Нет ничего удивительного, что подобным же образом представлял атом и другой физик, Ирвинг Ленгмюр, заложивший основы науки о плазме, — газе из положительных ионов и электронов. Да и автор первой модели атома, Дж. Томсон, открывший электроны, считал, что атом и его масса складывается из тысяч электронов и того же числа связанных с ними в пары положительных зарядов [139]. А, самое удивительное, что к таким взглядам за тысячи лет до нас пришли древние индийцы (особенно школа вайшешики во главе с атомистом Кaнадой), которые ещё до Демокрита создали учение об атомах и молекулах, считая их составленными из "диад", — попарно связанных стандартных точечных частиц, аналогичных электронам и позитронам (Мюллер М. Шесть систем индийской философии. М., 1995). Так и в нашей модели бипирамидальный каркас, электронные слои и ответственную за спектр электрон-позитронную сетку атома формируют, вероятно, позитроны, прочно связанные с электронами в электродиполи, диады, или динамиды, обладающие весьма любопытными свойствами, например нулевой инерцией (§ 3.18). Оттого в атоме и нет позитронов в свободном состоянии.

    Объясняет бипирамидальная модель ядра и открытую Планком связь энергии E=MV2/2=hf и скорости V электрона с частотой f его обращения в атоме. Магнитный момент, как нашли выше (§ 3.2), проявляется лишь на краях, рёбрах структур. Поэтому, рёбра бипирамиды аналогичны магнитным стержням. И, при соответствующей ориентации (Рис. 108) их магнитное поле в плоскости орбиты (с центром O в вершине пирамид) будет перпендикулярно к этой плоскости и равно B=?0?/?ar2, где a — расстояние между электронами в стержне, равное их классическому радиусу r0=e2/4??0Mc2, ?=?eh/M — их магнитный момент (§ 3.1). На электрон, летящий по орбите радиуса r с центром O, действует сила Лоренца F=eVB=e2f?0?/ar (с учётом значений B и V=2?rf), направленная в O и равная MV2/r. Откуда MV2/2=fe?0?/a, где e?0?/a=h. Именно эти электроны, запертые в магнитной ловушке атома, вылетают из него при облучении светом частоты f. Это объясняет планковский спектр излучения (§ 4.1), фотоэффект (§ 4.3) и эффект Комптона (§ 4.7). Итак, всего в атоме три типа электронов: одни сидят на гранях и перегородках ядра и генерируют линейчатый атомный спектр, другие уложены слоями в раструбах ядра, задавая химические свойства, а третьи, как на катушку, наматывают на ядро витки орбиты, отвечая за тепловой спектр и фотоэффект. Электроны легко переходят между этими тремя состояниями.

    Рис. 108. Движение электрона в магнитном поле бипирамиды ядра с частотой f=E/h=MV2/2h.


    Предсказывает данная модель и такие свойства, которые не объяснила даже квантовая теория. Рассмотрим заполнение слоёв и связанные с этим физико-химические свойства. В первом периоде всё просто: в атоме водорода электрон занимает в слое № 1 одно из двух мест и, потому, атом может отдать электрон, либо принять на вакантное место чужой, проявляя валентности +I и — I. Гелий, в котором весь слой заполнен двумя электронами, не может ни отдать их, ни поглотить новые. То же — во 2-м и 3-м периоде: электроны заполняют второй и третий слой, имеющие по 8 мест, а атомы проявляют валентности, соответствующие числу электронов в слое. Завершают эти периоды благородные газы, где все 8 мест крайнего слоя заняты электронами, связанными в слое столь прочно, что уже не отрываются, придавая газам химическую инертность (Рис. 106).

    В последующих, — 4-м и 5-м периодах важен уже порядок заполнения слоя. Сперва электроны заполняют слой по периметру, где они удерживаются крепче (совсем как лёд начинает кристаллизоваться сперва по краям водоёма). Таких крайних мест всего 10, соответственно, и элементов этого типа в периодах по 10,— с калия по никель и — с рубидия по палладий. Когда периметр заполнен, прочно связанные в нём электроны отрываются лишь с большим трудом (Рис. 109). Поэтому, от заполнения периметра у никеля и палладия (а также у платины в 6-м периоде) эти благородные металлы по инертности становятся аналогичны благородным газам. А, при дальнейшем заполнении слоя, отсчёт групп и валентностей начинается заново, подобно тому, как это происходит во 2-м и 3-м периодах после завершения слоёв у инертных газов. Свойства элементов потому и повторяют друг друга, что электроны, расположенные в завершённых слоях или целиком занявшие периметр, не отрываются и не участвуют в образовании связей, а оставшиеся электроны образуют конфигурации, подобные конфигурациям предшествующих элементов.

    В 6-м и 7-м периодах возникают группы лантаноидов (La — Lu) и актиноидов (Ac — Lr), содержащие по 15 химически подобных элементов с валентностью +III, разом помещаемых в IIIБ группу своего периода [145]. Такое число элементов есть следствие того, что электроны из периметра слоя крепко в нём связаны и мало влияют на свойства атома. А, потому, элементы, у которых идёт заполнение 14-ти мест этого периметра (у La периметр пустой), — химически подобны. После того, как периметр заполнен, дальнейшее заполнение слоя идёт так же, как у слоёв 4-го и 5-го периодов.

    В лице лантаноидов и актиноидов квантовая физика имеет массу нерешённых проблем. Так, известно, что элементы эти способны проявлять, помимо валентности +III, и другие, — совершенно необъяснимые. А, с позиций пирамидальной модели, они естественны: электроны периметра, хоть и с трудом, всё же могут отрываться, — тогда атом проявляет соответствующие степени окисления. Кроме того, если полость каждой пирамиды разделена перегородкой пополам (Рис. 107), и периметр заполняется сначала в одной полости, а затем в другой, то электроны периметра можно разбить на две равных группы по 7 электронов в каждой. Электроны, занявшие все семь мест, оказываются крепко связаны и, потому, не влияют на химические свойства. Соответственно, элементы образуют два подпериода, расположенные один под другим в таблице Менделеева (Рис. 109). Именно такую форму придал некогда таблице Менделеев, а поздней она была уточнена его другом и коллегой, чешским химиком Б.Ф. Браунером [145]. Этот исконный вариант таблицы сразу объясняет, как элементы Ce и Tb могут иметь валентность (+IV), а Eu и Yb — валентность (+II): они просто попадают в 4-ю и 2-ю группы. Элементы же La, Gd и Lu, стоящие в третьей группе, проявляют всегда только валентность +III. Впрочем, из-за того, что электроны могут образовывать в атоме разные конфигурации, валентность может быть различной (§ 4.14).

    Рис. 109. Расположение лантаноидов и актиноидов в таблице Менделеева по Браунеру и Прандтлю с соответствующим порядком заполнения электронами слоёв 6-го и других чётных периодов.


    Другое важное свойство этой формы таблицы в том, что она позволяет выделить элементы с ферромагнитными свойствами. Если рассмотрим элементы второй строки 6-го периода — Sm, Eu, Gd, Tb, Dy, Ho, Er, то увидим, что или они сами, или их соединения — сильные ферромагнетики. Такое подразделение сразу позволяет выявить уникальные элементы с ферромагнитными свойствами и в других чётных периодах таблицы. Так, во втором периоде периметр слоя содержит 6 электронов. Разделяя их и соответствующие элементы на две равных группы и беря элементы из второй, — C, N, O, найдём, что именно их соединения обладают ферромагнитными свойствами. То же, и в четвёртом периоде, где периметр слоя содержит 10 электронов, вторая половина соответствующих элементов — Cr, Mn, Fe, Co, Ni (Рис. 109) — либо сами, либо в соединениях, — яркие ферромагнетики. Итак, пирамидальная модель сразу выделяет те редкие элементы, что наделены ферромагнитными свойствами. По сути, это атомы, в которых идёт заполнение мест возле граней правого отсека нижней пирамиды (Рис. 104, Рис. 107). А элементы, у которых идёт заполнение электронами мест в углах пирамиды у краёв перегородки (Cr, Ti, Nd, Er, Tm, Yb), обладают уникальными оптическими свойствами, находя применение в качестве активных ионов в лазерах.

    То же, что у лантаноидов, построение таблицы применимо и к 7-му периоду, содержащему актиноиды (Рис. 109). Таблица и пирамидальная модель атома снова объясняют, почему многие актиноиды проявляют, вместо 3-ей, — нетипичные для себя валентности: Md — (+I); No — (+II); Th, Bk — (+IV); Pa — (+V); U — (+VI); Np — (+VII) [145], чего не может объяснить квантовая физика. Не случайно, давно уже замечено, что актиноиды, в отличие от лантаноидов и вопреки предсказаниям квантовой теории атома, очень мало похожи друг на друга. Например, уран химически больше напоминает не своих "собратьев" из 3-й группы, а металл вольфрам из 6-й группы. Так что помещение актиноидов, равно как и лантаноидов, в одну клетку таблицы Менделеева многие считают условным и даже ошибочным [13].

    Ещё на заре становления учения о строении атома такие учёные, как Томсон, Льюис, Ленгмюр, Ленард, Ритц, разработали модели атома в форме геометрически правильных тел, образованных упорядоченно размещёнными субатомными частицами, чем объяснили многие атомные свойства [49]. Такая кристаллическая модель атома была не только проста, наглядна, но и наиболее естественна, ибо стандартные числа электронов на атомных уровнях, точная идентичность однотипных атомов и их спектров наводят на мысль о кристаллах и правильных геометрических телах. Но с приходом квантовой механики эти модели забыли, хоть они и объясняли эффекты загадочные для квантовой физики. Бипирамидальная кристаллическая модель позволит не только наглядно и классически истолковать все свойства атомов и ядер, глубже понять суть таблицы Менделеева, но и открыть новые закономерности и свойства элементов, научиться находить новые соединения с заданными свойствами, включая ферромагнитные сплавы, полупроводниковые материалы, высокотемпературные сверхпроводники (§ 5.9). Квантовая же теория объясняет, по большей части, лишь уже известные свойства, да и то ограниченно. В своём стремлении спасти ошибочную планетарную модель атома, творцы квантовой физики, во главе с Бором, предпочли уничтожить механику, нежели отказаться от своего идола. А идеи Ритца, Дж. Томсона, Ленарда, Льюиса, Лэнгмюра, Циолковского, которые пытались построить альтернативную модель атома, в рамках классической механики, были отвергнуты и забыты. В итоге, вот уже век наука не имеет ясных представлений о структуре атома и ядра.


    § 3.4 Спектры щелочных металлов, сложных атомов и молекул

    Комбинируя путём сложения или вычитания, либо сами сериальные формулы, либо входящие в них константы, можно построить новые формулы, которые позволяют полностью вычислить новые линии щелочных металлов, открытые за последние годы Ленардом и другими, а также делают возможными далеко идущие приложения к другим элементам, в частности к гелию.

    (Вальтер Ритц, "О новом законе сериальных спектров" [9, 50])

    Выше был объяснён на основе модели атома Ритца спектр водорода и водородоподобных атомов, а также рентгеновские спектры и закон Мозли для них (§ 3.2). Но Ритц нашёл объяснение также и спектрам более сложных атомов, например атомов щелочных металлов. Их спектры имеют гораздо более сложную структуру, чем у водорода и водородоподобных атомов. Как говорилось, это связано с влиянием полей дополнительных электронов на электрон, генерирующий спектр. Поскольку генерировать спектр может любой электрон, приведённый в колебательное движение, то усложнение спектра связано с общим взаимным влиянием электронов. Своими полями они смещают друг друга от прежних положений равновесия в новые, с иным значением поля B и частоты колебаний в нём. Причём, поскольку все эти электроны могут занимать в атоме разные узлы, образуя разные конфигурации, то и смещения от положений равновесия, приводящие к изменению магнитного поля, могут быть различными и происходить в разные стороны. Соответственно, возникают дополнительные спектральные линии, генерируемые электронами в смещённых положениях: спектр атома обогащается, усложняется. И, чем больше электронов способно перемещаться в атоме, тем сложнее будет спектр.

    Действительно, самыми простыми спектрами обладают щелочные металлы, стоящие в начале периодов, — в первой группе. Это означает, что в них имеется, по сути, один свободно смещающийся электрон. Все же остальные электроны прочно связаны в целиком заполненных электронных слоях (§ 3.3), а потому они вносят лишь небольшие стандартные искажения спектра. Вот почему спектры щелочных металлов очень напоминают водородный спектр, подчиняясь почти тем же зависимостям [74]. Элементы второй группы имеют уже два свободно смещающихся электрона, которые могут образовывать гораздо больше комбинаций положений в атоме, соответственно, и спектр этих элементов сложнее. И так далее: чем больше электронов, тем сильней усложняется спектр, если только новые электроны не образуют устойчивых симметричных конфигураций и не окажутся прочно связаны в слое, скажем, — вдоль его периметра. Впрочем, с приближением к концу периода, когда свободных мест остаётся всё меньше, электроны всё неохотней отрываются от слоя и образуют меньше разных комбинаций, поэтому, к концу периода спектр может даже упрощаться. Наконец, у инертных газов, где все электроны должны быть прочно связаны в слое (Рис. 106), необходимо отделение одного или нескольких электронов от слоя — для генерации спектра на электронном уголке. Это объясняет связь характера спектра с положением элемента в таблице Менделеева, с его химическими свойствами. А именно: число электронов, которые может отдать или принять атом для образования химической связи, задаёт также число электронов, способных переходить из крайнего электронного слоя в плоскость, где происходит генерация спектра (Рис. 107), с образованием там разных конфигураций и усложнением спектра взаимным влиянием.

    Объясняет взаимодействие электронов и то, почему многие из сложных атомов имеют мультиплетный спектр: каждая спектральная линия окружена близкими линиями-спутниками. Вероятно, причина этого в том, что внутриатомные электрические поля остальных электронов слегка смещают генерирующий электрон от равновесного положения. Соответственно, меняется магнитное поле возле электрона и генерируемая его колебаниями частота линии. Разным положениям окружающих электронов в атоме отвечают разные позиции генерирующего электрона возле узла. А, потому, вместо одной линии в сложных атомах мы наблюдаем группу близко расположенных линий, за каждую из которых отвечают свои атомы. Интенсивность линии определяется процентом атомов, её генерирующих, то есть, — вероятностью для электронов занять соответствующие положения в атоме [104]. Поэтому, как показал ещё Ритц, чем ближе к границе серии, то есть, — чем выше m в формуле f=Rc[1/n2–1/m2] и чем дальше электрон от оси и начала координат, тем ниже интенсивность линии, поскольку электрону сложнее удержаться в дальних узлах. По той же причине, линии становятся всё более размытыми: электроны и позитроны в остове дрожат за счёт теплового движения, как атомы в простом кристалле (§ 3.14). Чем дальше электрон, тем сильней это сказывается, и тем его положение всё менее стабильно, соответственно, — и линии более размыты [104].

    Так же, и запрещённые линии не высвечиваются отнюдь не от запрещающих переходы квантовых правил отбора, а — от малой устойчивости соответствующих положений электрона в атоме, а, значит, — малой интенсивности линии. Как показал Ритц, в электрической искре спектральные серии содержат меньше линий: серия обрывается раньше, опять же, — потому, что в мощных электрических полях искры, за счёт сильных и частых соударений атомов, электроны уже не могут удержаться в крайних, малоустойчивых положениях, и соответствующие линии не высвечиваются [104]. И, напротив, в спектрах газовых туманностей, где газ крайне разрежен и холоден, а столкновения весьма редки и слабы, запрещённые линии, невозможные по квантовой теории, — наблюдаются. Ведь там электроны получают возможность длительно удерживаться даже в крайних малоустойчивых положениях, высвечивая соответствующие линии.

    Итак, интенсивность данной спектральной линии определяется процентом атомов, генерирующих эту линию, то есть, в конечном счёте, — вероятностью занятия электроном соответствующего положения в атоме, задаваемой устойчивостью данного положения, в котором может случайно оказаться то или иное число электронов из ансамбля атомов. Подобный вероятностный подход к определению интенсивности спектральных линий был развит и в квантовой теории, в частности, — Эйнштейном, опять же без всяких ссылок на Ритца, поэтому сейчас говорят просто о коэффициентах Эйнштейна, задающих вероятности атомных переходов. Ритц же не только предложил эту идею гораздо раньше, но и развил её целиком в рамках классического подхода, поскольку вероятность у него связана не с физическим индетерминизмом, неопределённостью, а — со случайным, хаотическим движением атомов и электронов в них, аналогичным случайному движению броуновских частиц (§ 4.13).

    Ритц также внёс существенный вклад в установление закона и природы спектральных серий щелочных металлов, подобных спектру водорода f=Rc[1/n2–1/m2], но только с малыми поправками [74]. Найденная Ритцем точная формула для спектров щелочных металлов записывается следующим образом [50]: f=Rc[1/(n+?'+b'/n2)2–1/(m+?+b/m2)2], где ?, b, ?', b' — малые постоянные поправки, индивидуальные для каждого металла. Из модели Ритца легко понять происхождение этих поправок. Вспомним, что целые числа n и m задают расстояния r1=2am и r2=2an от магнитных осей, и, соответственно, магнитное поле B в узле, где колеблется электрон, а, значит, и частоту его колебаний f=Be/2?M (§ 3.1). Наличие поправок означает, что генерирующий электрон смещается от прежнего равновесного положения и его расстояние до осей становится равно r1=2a(m+?+b/m2) и r2=2a(n+?'+b'/n2). Постоянное смещение на 2a? и 2a?' вызвано, вероятно, изменением конфигурации структуры остова атома, задающего магнитное поле, скажем, — от её перекоса, если боковые грани слоёных призм (Рис. 102, Рис. 103) скошены и те представляют собой наклонные, а не прямые призмы. Соответственно, магнитные оси окажутся смещены от осей координатной сетки электрона на расстояния 2a? и 2a?', что и ведёт к изменению спектра. Что же касается переменных поправок к r1=2am и r2=2an величины 2ab/m2 и 2ab'/n2, то они, как легко видеть, — уменьшаются с ростом m и n, то есть — с удалением от магнитных осей. Так что, эти поправки вызваны, вероятней всего, влиянием краёв структуры, генерирующей спектр. Это — электрическое влияние, смещающее электрон от положения равновесия и как раз спадающее пропорционально квадратам расстояний электрона от магнитных осей r1=2ma и r2=2na и от других электронов, прилипших к этим осям. Все вместе эти отклонения, — положения электрона или магнитного поля, в котором он колеблется, и приводят к изменению частоты генерируемого его колебаниями света, в форме поправок, учтённых в более точной формуле Ритца.

    В своих работах Ритц также анализировал полосатые спектры молекул и доказывал, что в них так же работает открытый им комбинационный принцип. Однако, число возможных комбинаций существенно возрастает за счёт того, что электроны в молекуле могут располагаться гораздо большим числом способов и, вдобавок, возникают различные способы сложения магнитных полей атомов. Поэтому, молекулы дают гораздо больше спектральных линий, которые располагаются столь тесно, что сливаются при не слишком высоком разрешении спектроскопа в сплошные полосы. Кроме того, у молекул имеются вращательные (ротационные) и колебательные спектры, связанные с колебаниями атомов (точнее их заряженных ядер) в молекулах. В этом случае, колебания уже гарантированно носят чисто классический характер, отвергая в очередной раз квантовые фантазии. При колебании или вращении атомов в молекуле возле точек их связей эти заряды генерируют излучение с частотой соответствующих колебаний. У каждой молекулы эти частоты жёстко фиксированы, подобно частоте колебаний грузов, соединённых пружинкой. Для каждой молекулы существует ряд таких частот, поскольку в зависимости от типа колебания и точки связи атомов, молекула имеет свои частоты колебаний. В итоге, в спектре каждого вещества возникают свои ротационные и вибрационные полосы [19].

    Отметим, что такой механизм генерации спектров за счёт упругих механических колебаний атомов, молекул и зарядов в них, предполагал ещё Ритц в своей ранней упругостной модели атома, изображавшей атом в виде упругой мембраны [74]. В частности, Ритц утверждал: "линейчатые спектры обязаны своим возникновением собственным колебаниям двумерных образований" [50]. Таким образом, Ритц является первопроходцем не только в области классического объяснения строгих закономерностей спектральных серий в линейчатых атомных спектрах, в том числе в спектрах водорода, щелочных металлов и сложных атомов, но и по части объяснения полосатых спектров молекул. А, ведь, об их природе во времена Ритца никто даже не задумывался, по причине их чрезвычайной сложности и запутанности.

    Примечательно, что физики-кванторелятивисты до сих пор не могут расшифровать и теоретически рассчитать спектры многоэлектронных атомов, даже такого простого как атом гелия, содержащего всего два электрона. Квантовая механика "объяснила" только те спектральные серии и закономерности, которые были уже открыты и объяснены физиками-классиками, в том числе Ридбергом, Ритцем и другими, посредством классических колебаний электрона в поле ядра. С одной стороны, это показывает бессмысленность и ненужность всех квантовых трактовок (придуманных задним числом), а, с другой стороны, классические модели (и особенно модель Ритца) подают большие надежды в смысле открытия новых спектральных закономерностей и физического (а не мистического) истолкования спектров многоэлектронных атомов.


    § 3.5 Эффекты Зеемана, Штарка и грависмещение частоты

    Данная модель молекулярного поля H0 не только пригодна в значительно большей степени, чем лоренцевская гипотеза, … для представления явлений эффекта Зеемана в их большом многообразии и с их характеристическими признаками, … но также оправдывается при объяснении сериальных законов — проблемы, которой теория Лоренца совершенно не касалась.

    (Вальтер Ритц, "Магнитные атомные поля и сериальные спектры" [9, 50])

    Как мы видели, Ритц на основе своей модели легко объяснил эффект Зеемана (§ 3.1), показав, что внешнее магнитное поле Вм, налагаясь на магнитное поле атома В, меняет его величину и, соответственно, частоту вращения электрона в этом поле (Рис. 94). Это приводит к тому, что вместо одной линии возникает несколько близких линий (расщепление линий). Обычно возникает три линии, — триплет. Центральная линия создаётся электронами, находящимися в исходном внутриатомном магнитном поле В: внешнее поле Bм на них либо совсем не влияет, либо налагается перпендикулярно основному полю В и, будучи много меньше его, почти не меняет частоты вращения электрона, остающейся прежней f=eB/2?M. Для других электронов, расположенных в других плоскостях атомной пирамиды (Рис. 107) или в других атомах, ориентация поля В оказывается противоположной внешнему полю Bм. Поэтому, они генерируют на частоте f=e(B-Bм)/2?M. Наконец, у третьего типа электронов поля сложатся, а, потому, такие электроны вращаются и генерируют свет с частотой f=e(B+Bм)/2?M. Это и приводит к тому, что рядом с центральной линией на частоте f=eB/2?M появляются две соседние, сдвинутые вправо и влево на ?f=eBм/2?M. То, каким образом для одних электронов поля B и Bм суммируются, а для других вычитаются, легко понять из бипирамидальной модели. Генерирующие спектр электроны сидят на разных гранях и перегородках этих пирамид, причём, внутриатомное поле B, как выяснили (§ 3.1, § 3.2), всегда перпендикулярно плоскости этих граней. В магнитном поле атомы располагаются упорядоченно, ориентируя общее магнитное атомное поле вдоль внешнего поля. При этом, одни грани оказываются перпендикулярны внешнему полю Bм, а для других оно лежит в плоскости граней атома. Соответственно, для электронов, расположенных в одних плоскостях, внешнее поле, складываясь или вычитаясь из внутриатомного, изменит частоту колебаний, а у электронов, расположенных и колеблющихся в той же плоскости, что и внешнее поле Bм, частота колебаний не изменится. Это же объясняет различную поляризацию смещённых и несмещённых линий: генерирующие их электроны колеблются во взаимно перпендикулярных плоскостях, а, значит, в разных плоскостях колеблется создаваемое ими переменное электрическое поле, соответственно, по-разному поляризовано и их излучение.

    Объяснил Ритц и аномальный эффект Зеемана, состоящий в том, что каждая из расщеплённых линий, в свою очередь, расщепляется под действием внешнего поля. Это связано с тем, что атом прецессирует, поворачивается во внешнем поле. Действительно, в отличие от уединённого электрона, магнитный момент которого не может установиться во внешнем поле сонаправленно полю, а начинает прецессировать за счёт гироскопического эффекта, структура, образованная из многих магнитиков, вращающихся электронов, сразу ориентируется вдоль внешнего магнитного поля, как видно на примере обычных магнитов, — комплексов из элементарных круговых токов. Однако гироскопический эффект, всё же, сказывается и здесь, поэтому магнитный момент атома несколько отклоняется от оси внешнего магнитного поля и начинает прецессировать вокруг неё. Частота этой прецессии, как показал Ритц, опять же, складывается с частотой вращения электрона в магнитном поле или вычитается из неё, что и приводит к появлению вторичного расщепления линий. Возможны и более сложные случаи расщепления линий, особенно в многоэлектронных атомах, которые за счёт наличия многих электронов, располагающихся в атоме различным образом и также обладающих магнитным моментом, ведут к тому, что атом может располагаться несколькими способами по отношению к внешнему полю Bм. Кроме того, если это магнитное поле Bм достаточно велико, оно способно менять внутриатомное поле B не только путём наложения, но и посредством изменения направлений магнитных моментов частиц, генерирующих поле B, упорядочивая их и упрощая картину расщепления линий. Такой эффект в мощных магнитных полях, сопоставимых с внутриатомными, и впрямь наблюдается и называется "эффектом Пашена-Бака" [134]. Как видим, все особенности эффекта Зеемана следуют из модели Ритца.

    Кроме эффекта Зеемана, приводящего к расщеплению линий в магнитных полях, известен и эффект Штарка, ведущий к смещению и расщеплению линий под действием сильного электрического поля [82, 134]. В эффекте Штарка обычно тоже возникает мультиплетный спектр: каждая спектральная линия расщепляется на несколько близких. Причина этого в следующем. Атом, за счёт собственного дипольного момента, ориентируется внешним электрическим полем. Причём, ориентироваться он может по-разному, в зависимости от того, как в атомной бипирамиде направлен дипольный момент, заданный разными вариантами положений электронов в атоме. Число возможных ориентаций атома в поле ограничено конечным числом позиций электронов в атоме. Потому, и составляющая поля, действующая на электрон, генерирующий спектр, и смещающая его от положения равновесия, — меняется дискретно.

    Таким образом, снова каждая линия расщепится на несколько отдельных. Причём, как в эффекте Зеемана, для части электронов внешнее электрическое поле оказывается направлено перпендикулярно грани, на которой сидит и колеблется электрон, генерирующий спектр. Поэтому поле не смещает этот электрон от положения равновесия, и он даёт несмещённую линию. А для других электронов, возможно, того же атома, но — сидящих на других гранях, поле направлено вдоль плоскости, в которой смещается и колеблется электрон. Соответственно, внешнее поле смещает его от положения равновесия (атом поляризуется), электрон оказывается в магнитном поле иной величины и генерирует на смещённой частоте. Поскольку смещённые и несмещённые электроны колеблются в разных плоскостях, излучаемые ими смещённые и несмещённые линии имеют разную поляризацию. Кроме того, если электрические поля очень сильные, возможно смещение и расщепление линий и за счёт искажения, электрической поляризации самой электрон-позитронной кристаллической решётки атома, где электроны и позитроны смещаются под действием поля в противоположных направлениях. В эффекте Зеемана атом тоже принимал в магнитном поле разные положения, однако магнитное поле меняло частоту колебаний электрона не от смещения его из положения равновесия, а от добавки или вычета внешнего магнитного поля из внутриатомного. Вот почему, расщепление линий магнитным полем гораздо сильнее, чем электрическим.

    Ещё слабее сдвиг спектральных линий гравитационным полем, наблюдаемый, возможно, в спектре Солнца и в эффекте Мёссбауэра. Воздействие гравитации, во-первых, сдвигает электроны и протоны, генерирующие спектр, от равновесных положений, тем самым меняя величину атомного магнитного поля, в котором они колеблются, и частоту их колебаний. Во-вторых, неоднородное гравитационное поле создаёт дополнительную растягивающую силу, аналогичную приливной силе со стороны Луны. Действуя на заряд, эта сила расширяет, растягивает его орбиту, уменьшая частоту вращения, что и проявляется в смещении длин волн и частот спектральных линий атома и ядра. Возможно, это смещение частоты колебаний зарядов в атомах и воспринимают в качестве мнимого изменения темпа течения времени в поле тяготения (§ 1.18). Стоит отметить, что влияние гравитации будет одинаково сказываться как на сдвиге частот атомных спектров (атомные часы), так и на сдвиге частот ядерных спектров (эффект Мёссбауэра), ввиду того, что эти спектры, как увидим, генерирует единый механизм (§ 3.7). Тогда понятно, почему и с помощью эффекта Мёссбауэра, и с помощью атомных часов обнаруживают одинаковые изменения "темпа течения времени", а реально, — лишь частоты колебаний в гравитационном поле.

    Таким образом, гипотеза Ритца о природе эффекта Зеемана позволяет объяснить не только все особенности этого эффекта, но также и эффект Штарка, и гравитационное смещение частоты, доказывая их общую природу и универсальность магнитной модели атома Ритца. Сторонники модели атома Бора обычно утверждают, что эффект Штарка объясним лишь по квантовой теории. На деле же, именно классическая теория атома Томсона-Ритца даёт наиболее простое и естественное объяснение эффекту. Да и предсказан был эффект Штарка учителем Ритца, В. Фойгтом (специалистом по физике кристаллов [50, 156]), — как раз в рамках классической модели атома, структура которого, подобно кристаллам, возмущается внешним полем, меняющим свойства атомов и частоты колебаний его электронов. Наконец, и сам Штарк, открыв в 1913 г. одноимённый эффект, утверждал на основе экспериментальных данных, что теория атома Бора ошибочна и что эффект имеет классическую трактовку. Именно Штарк, изучив интенсивности расщеплённых спектральных линий атомов, движущихся под разными углами, связал расщепление с разной поляризацией атомов в электрическом поле — от смещения в них электронов, в зависимости от атомной структуры ("Нобелевские лекции по физике. 1901–1921 гг.", М.: УФН, 2002). При этом, Штарк придерживался модели атома Томсона, близкой к магнитной модели Ритца, и он же построил теорию ковалентной связи, сопоставив валентность атома с числом электронов на его внешней оболочке. Выходит, статическая модель атома Томсона-Ритца классически объясняла эффект Штарка, тогда как динамическая планетарная — не объясняла. Но, вместо того, чтобы принять статическую модель и отвергнуть планетарную, теоретики, во главе с Бором, просто подогнали последнюю, дополнив абсурдными квантовыми постулатами и отвергнув классическую механику, которую и сочли виновницей своего непонимания эффекта Штарка. Реальная же причина расщепления и сдвига линий, как давно поняли физики-классики, состоит в смещении зарядов, генерирующих спектр, от узловых положений под влиянием внешних полей и полей других зарядов атома, что сказывается не только на атомных, но и на ядерных спектрах. Это влияние, выявленное с помощью того же эффекта Мёссбауэра, ещё раз подтвердило глубокую связь строения молекул, атомов и электронных оболочек в них — со строением ядер и ядерными спектрами [135].

    § 3.6 Строение ядер

    Чем больше в ядре должно поместиться нуклонов, тем больше должна быть площадь поверхности ядра, где происходят присоединения то протонов, то нейтронов… Этим особенностям лучше всего отвечает форма ядра в виде двух пирамид Хеопса, соединённых усечёнными вершинами. Тогда их "подошвы" и становятся теми поверхностями, которые послойно заполняются и протонами и нейтронами.

    (В. Мантуров, "Ядерные силы — предложение разгадки" [79])

    Выше было показано, что именно ядро, — атомный остов, своей бипирамидальной формой задаёт все свойства атомов и отвечает за периодичность свойств элементов, проявляющуюся в форме периодического закона Д.И. Менделеева (§ 3.3). Тем самым, впервые проложен мост между химическими и ядерными свойствами элементов, о чём давно мечтали физики [139, 145]. Но, оказывается, связь химических и ядерных свойств проявляется и в другом. Так, ядерные свойства элементов тоже имеют некую периодичность, во многом повторяющую периодичность химических свойств. Это видно из распространённости элементов, числа их изотопов, значений атомных масс. Скачки этих характеристик обычны на границах периодов. Поэтому, заметно выбиваются из общей последовательности элементы VIIIA группы, — инертные газы: He, Ne, Ar, Kr, Xe, Rn (Рис. 106), — хотя бы по резким скачкам их атомных масс. Если проследить зависимость атомного веса от номера элемента, нанеся её на график, то получится монотонная кривая: атомный вес, с увеличением номера на единицу, возрастает в среднем на две единицы. Но есть на этой кривой выбросы, скачки, — особенно заметные вблизи инертных газов. Рекорд принадлежит радону, со скачком аж на 12 атомных единиц массы.

    Периодичность свойств атомов — это, как нашли выше, следствие послойного заполнения бипирамидального остова (ядра) атома электронами (§ 3.3). Когда заполнится один слой, прочно связанные в нём электроны уже не отрываются и не участвуют в образовании химической связи, и, при заполнении следующего слоя, всё повторяется с нуля. Оттого, и свойства элементов периодически повторяются с заполнением каждого последующего уровня. Тем же, видимо, обусловлена и некая периодичность свойств ядер, проявляющаяся в существовании магических ядер (особо устойчивых сочетаний нуклонов, аналогичных химически устойчивым атомам инертных газов), а, также, — связь между свойствами ядер и расположением элементов в таблице Менделеева.

    Так, к примеру, по неясной причине, повышена стабильность ядер у элементов IA группы. В ней больше всего стабильных нечётно-нечётных ядер. Подобные ядра, содержащие нечётное число протонов и нейтронов, обычно, — крайне нестабильны и потому не встречаются в природе. Известно лишь 4 стабильных нечётно-нечётных ядра, но, из этих четырёх, два расположены в первой группе: 2H, 6Li, так же, как нечётно-нечётное ядро 40K, имеющее столь большой период полураспада, что прежде оно считалось стабильным и до сих пор может условно считаться таковым. На деле, калий-40 относят к естественно-радиоактивным изотопам, имеющим огромный период полураспада, а, потому, всё же сохранившимся в природе. Число естественно-радиоактивных ядер невелико, и, опять же, их больше всего в IA группе: кроме 40K, это 87Rb, 135Cs и 223Fr. Химический антипод элементов первой группы — элементы седьмой группы. Но и по ядерным свойствам это — антипод. Так, видимо, от низкой стабильности ядер в природе редко встречаются или напрочь отсутствуют элементы VIIB группы. Этот закон, открытый ещё в 1924 г. В. Прандтлем и А. Гриммом, был забыт, как и всё противоречащее квантовой теории [145]. В самом деле, из пяти элементов группы VIIБ (по исконному варианту таблицы Менделеева и Браунера, Рис. 109): Mn, Tc, Re, Pm и Np, — распространён только марганец, рений же крайне редок (это самый дорогой металл), а все прочие элементы, будучи нестабильны, в природе практически не встречаются и их получают искусственным путём.

    Другой пример дают нестабильные нечётно-нечётные ядра с очень большим периодом полураспада. В природе можно встретить лишь 4 таких ядра: 40K, 50V, 138La, 176Lu. Но, ведь, La и Lu — это крайние элементы ряда лантаноидов, а K и V — крайние элементы полупериметра 4-го слоя (Рис. 109). Исключительность элементов из семейства лантана (лантаноидов), не только в плане химических, но и в плане ядерных свойств, отмечалась уже давно [145]. Но никто не мог объяснить, почему эти свойства взаимосвязаны. А причина, как увидим, — в их едином механизме, в атомном остове. Кристаллический ядерный остов атома и осуществляет связь химических свойств элементов, их положений в таблице Менделеева — с их ядерными свойствами. О такой связи говорили ещё И. Ридберг, А. Ван-ден-Брук, Ф. Содди [139], которые закладывали основы представлений о строении атома, ядра и защищали исконную форму таблицы Менделеева, где лантаноиды и актиноиды распределены по группам (Лисневский Ю. Антониус Ван-ден-Брук. М.: Наука, 1981).

    Всё перечисленное подтверждает тесную связь строения ядра и электронных слоёв в атоме. Выходит, таблица Менделеева отражает закономерности, чередование и взаимосвязь не только физико-химических, но и ядерных свойств элементов. Значит, бипирамидальный остов атома отвечает как-то и за ядерные свойства элементов. Таким образом, именно эта геометрическая структура бипирамиды должна дать ключ к пониманию структуры ядра. Геометрия, наглядный, образный подход, как знает любой инженер, позволяют легко решать даже задачи, непокорные аналитическим методам. Именно так Луи Пуансо — инженер, известный открытием нового типа правильных многогранников, — решил важную проблему механики. Без геометрии невозможны адекватные представления о строении мира. Так, пространственное размещение атомов в молекулах и кристаллах определяет их физико-химические свойства, а размещение элементов в таблице Менделеева — даёт информацию о свойствах атомов и их соединений. Но, по иронии судьбы, именно в микромире, — фундаменте мироздания, — геометрию и наглядные модели игнорируют, считают ненужными, сводя всё к формулам и прикрываясь туманом неопределённости, абсурдной размытости частиц, лишающей мир чёткой структуры.

    Наглядный, а, точней, "ненаглядный" пример этого дают нынешние представления об атомном ядре. Его изображают то заряженной каплей, то чередой оболочек, то ещё чем-нибудь, а то и, вовсе, — сгустком формул [11]. В итоге, физики так запутались, что сами признают своё непонимание структуры ядра и бессилие квантовой теории [135]. И лишь классическая модель атома даёт кристально ясную структуру ядра, объясняющую все его свойства. В этой модели ядро атома имеет вид бипирамиды: двух пирамид, соединённых усечёнными вершинами. Сия структура и задаёт конфигурацию электронных слоёв (оболочек), связь химических и ядерных свойств. Так, подобно атомам инертных газов, с особо устойчивыми конфигурациями электронов и высокой химической стойкостью, в некоторых ядрах нуклоны (протоны и нейтроны) образуют особо устойчивые сочетания, проявляющие инертность в ядерных реакциях. Такие ядра, названные "магическими", имеют повышенную прочность и слабо реагируют с другими ядрами и нейтронами.

    Вот числа протонов или нейтронов, образующих особо прочные сочетания (магические числа): 2, 8, 14, 20, 28, 50, 82, 126 [169]. Физики поняли, что магические числа, подобно периодам таблицы Менделеева, вызваны присутствием в ядре неких слоёв, оболочек, постепенно заполняемых нуклонами (протонами и нейтронами). Магичны и особо стабильны ядра с целиком укомплектованными оболочками. Но физики не сделали последнего шага: не догадались, что строение ядерных и электронных слоёв задано одной и той же структурой, — атомным ядром, которое и ответственно за глубокую аналогию химических и ядерных свойств, их периодичность.

    Рис. 110. Фигурные числа (квадратные, треугольные) и пирамидальные числа.


    Эта аналогия объясняет строение слоёв ядра. Числа электронов в электронных оболочках (2, 8, 18, 32) — это удвоенные квадраты целых чисел: 12, 22, 32, 42 (§ 3.3). В геометрии такие числа n2 называют "квадратными", относя к группе фигурных чисел, — количеств одинаковых камешков, частиц, послойно заполняющих фигуры в виде треугольников, квадратов и т. д. (Рис. 110). Так, треугольные числа образуют ряд: 1, 3, 6, 10…, где n-ое число Fn=n(n+1)/2. И, если числа электронов в слоях — это удвоенные квадратные числа, то числа протонов или нейтронов в ядерных оболочках оказались удвоенными треугольными числами вида n(n+1), то есть 2, 6, 12, 20, 30, 42, 56 [135]. Отсюда следуют все магические числа. Первое число 2 соответствует первому целиком заполненному нуклонами слою с числом мест 2. Второе магическое число 8 означает, что кроме первого заполнен ещё и второй слой из 6-ти мест: 2+6=8. Магическое число 20 возникает, если заполнен ещё и третий уровень: 2+6+12=20. Как для случая электронных слоёв, ядерные укладываются один над другим — в виде пирамиды, а, потому, эти три числа — это удвоенные пирамидальные числа вида n(n+1)(n+2)/3, образующие ряд: 2, 8, 20, 40, 70. Прочие магические числа находятся как удвоенная сумма n-го треугольного числа и (n–2) — го пирамидального: n(n+1)+n(n—1)(n—2)/3=(n3+5n)/3 (Рис. 111) [169].

    Рис. 111. Схема образования магических чисел (обведены) и их геометрическая трактовка.


    Всё это легко объяснить на базе бипирамидальной модели ядра. Подобно электронным слоям, ядерные — лежат в последовательных квадратных сечениях пирамид. Каждое сечение делится диагональной перегородкой на два треугольника. Поэтому, число частиц в слое равно удвоенному треугольному числу (Рис. 112). Протоны и нейтроны постепенно заполняют сечения бипирамиды, послойно укладываясь в её раструбы, словно горошины, семечки в кульки. При этом, протоны образуют отдельные слои, которые перемежаются слоями нейтронов (Рис. 113). Пирамиды связаны перемычкой, образованной слоями в два протона и два нейтрона. В дважды магическом ядре гелия заполнены лишь эти два слоя.

    Рис. 112. Структура нуклонных слоёв (слева) и слоёв электронных (справа).


    У последующих ядер начинают постепенно заполняться примыкающие к этим слоям с двух сторон слой нейтронов и слой протонов, пока не заполнятся целиком, образовав дважды магическое ядро кислорода, содержащее 8 нейтронов и 8 протонов. Оно обрастает новыми слоями (с одной стороны протонами, а с другой — нейтронами), вплоть до их заполнения у кальция, содержащего по 20 протонов и нейтронов. Но далее такое симметричное нарастание слоёв нарушается, поскольку у тяжёлых ядер число нейтронов N заметно преобладает над числом протонов Z. Поэтому, необходимо, чтобы крайний слой нейтронов был больше крайнего слоя протонов. А, значит, в одной пирамиде на два слоя больше, чем в другой. Так, например, устроено дважды магическое ядро кальция из 28 нейтронов и 20 протонов (Рис. 113). Видим также, что модель объясняет магическое число 14 [169], которого не смогла предсказать и объяснить квантовая физика. Впрочем, и другие магические числа не были предсказаны квантовой теорией, а были там получены, подобно числам электронов в оболочках атома (§ 3.3), методом подгонки, ибо переход к следующей оболочке и уровню начинался до того, как полностью заполнятся предыдущие [135]. Но тогда, зачем вообще говорить об оболочках и уровнях, раз их укомплектованность не важна?

    Рис. 113. Схема и ёмкости нуклонных слоёв в бипирамидальном ядре. Ниже — структуры слоёв в магических ядрах. Штрихованные слои образованы протонами, белые — нейтронами.


    Зато в классической модели атома и ядра прочные сочетания электронов или нуклонов отвечают лишь укомплектованным слоям частиц. Так, следующие бимагические ядра могли бы получиться из конфигураций, где оба крайних слоя образованы нейтронами, так что в одной пирамиде на три слоя больше, чем в другой (Рис. 113). Но такие дважды магические ядра нестабильны, поскольку в них слишком много нейтронов. Впрочем, из них легко получить просто магические ядра, если добавить несколько протонов или убрать часть нейтронов. Соответственно, ядро будет магично по числу N или Z. Правда, ещё одно дважды магическое ядро всё же есть — это ядро свинца-208, содержащее 82 протона и 126 нейтронов. Для столь тяжёлых ядер данное соотношение нуклонов устойчиво.

    Итак, наиболее стабильны самые симметричные дважды магические ядра: в них слои полностью укомплектованы и, потому, с трудом отдают и поглощают частицы. Просто магические ядра менее симметричны: один слой у них не дозаполнен. Поэтому избыток их стабильности менее выражен. Все прочие ядра — ещё менее симметричны: не дозаполнены оба крайних слоя, и эти ядра не выделяются стабильностью. Но и среди них есть более стабильные, — это ядра с чётным числом протонов и нейтронов. Возможно, повышенная стабильность связана с тем, что в нуклонных ячейках и слоях протоны спаяны в пары, равно как нейтроны. Потому, кстати, и вылетают они обычно из ядер связанными парами, скажем, — в ?-распадах, или в двухпротонных и двухнейтронных распадах (причина этого, видимо, кроется в особой форме протонов и нейтронов, имеющих разные выступы и впадины, укрепляющие связь частиц и объясняющие "стремление" протонов и нейтронов формировать отдельные слои-оболочки, § 3.12).

    В такой стабильности ядер, образованных из протонных и нейтронных пар, снова видно родство химических и ядерных свойств. Так, более устойчивы химические соединения с чётным числом связующих электронов (отсюда термин "электронная пара"). Да и элементы с чётным числом электронов — всегда более инертны, чем элементы с нечётным. Ведь, только чётное число частиц симметрично заполняет слои. А, именно, симметрия, геометрический порядок, как показал пример атомов и магических ядер, является мерой прочности и стабильности. Замечательно, что и к строению ядер, кристаллов наглядно-геометрическая баллистическая аналогия имеет прямое отношение, поскольку ядра возле пушек издавна складывали в форме фигурных ядерных пирамид. Поэтому, именно сложенные пирамидкой пушечные ядра обычно приводят в качестве иллюстрации пирамидальных чисел и модели укладки атомов в кристаллах.

    Бипирамидальная кристаллическая модель ядра легко объясняет, почему тяжёлые ядра делятся на две части: в отношении три к двум [135]. Бипирамида разламывается по перемычке на две пирамиды, отношение масс M1/M2 которых равно в среднем отношению двух соседних пирамидальных чисел: у тяжёлых ядер — как раз 3:2 (Рис. 114). Это же открывает причину, по которой у тяжёлых ядер соотношение числа нейтронов и протонов N/Z тоже равно 3:2. Ведь, если сложить отдельно протонные (штрихованные) и нейтронные слои, то они образуют две пирамиды, причём в нейтронной пирамиде будет на один слой больше (Рис. 114). Объясняет бипирамида и большое число изотопов тяжёлых элементов [79], и свойства, следующие из капельной модели ядра. Ядерные силы удерживают протонные слои от разлёта, благодаря слоям нейтронов, которые их разделяют. Однако, у тяжёлых элементов отталкивание протонов столь велико, что, начиная с полония, ядра нестабильны, и, с ростом атомного номера, стабильность их всё падает.

    Многие [21, 79], включая и физиков-ядерщиков [169], уже допускают, что ядро подобно кристаллу. И, точно, именно кристаллическая бипирамидальная модель ядра позволяет единым образом описать все ядерные и химические свойства элементов. Вскоре она позволит составить и своего рода периодическую таблицу ядер, вроде таблицы Менделеева, графически задающей свойства элементов.

    Рис. 114. Деление бипирамидального ядра на два осколка-пирамиды с отношением масс 3:2. Пирамиды не равны, поскольку крайние слои образованы нейтронами (которые в ядре преобладают): в одной пирамиде слоёв на один больше.


    Аналогия химии и ядерной физики позволяет понять и природу изомерии атомных ядер. Ядро из данного числа протонов и нейтронов можно построить многими способами, по-разному располагая частицы в слоях. Тогда, даже ядра с одинаковым протон-нейтронным составом, но разным строением, будут иметь разные стабильности. Это и есть ядра-изомеры, аналогичные молекулам-изомерам органической химии, имеющим одинаковый атомный состав, но разный порядок размещения атомов, а, значит, — разные свойства. Возможно, ядра способны распадаться разными путями и иметь несколько разных периодов полураспада [169], как раз ввиду того, что это смесь изомеров (процент данного типа распада определяется содержанием соответствующего изомера).

    Итак, свойства ядер заданы не только числом образующих их протонов и нейтронов, но и размещением их в остове. Аналогично в структурной химии давно открыто, что свойства молекул зависят как от числа атомов-составляющих, так и от их пространственного расположения в молекуле, — от её структуры, как это впервые показал А.М. Бутлеров (§ 5.16). Такие молекулы с идентичным атомным составом, но разным строением и свойствами, называют "изомерами". То же верно и для ядер. Явление ядерной изомерии давно открыто О. Ганном и более подробно исследовано, например, И. Курчатовым. Есть много ядер-изомеров с одинаковым протон-нейтронным составом, но разными периодами полураспада. Здесь проявляется организующая роль остова, где нуклоны образуют разные конфигурации. В квантовой модели ядра этому нет объяснения, как нет объяснения и магическим числам нуклонов, оболочечной модели. Ведь в ядре, в отличие от атома, нет силового центра, который задавал бы по квантовой механике систему уровней [135]. А в кристаллической модели ядра такая задающая уровни структура есть, — это атомный остов.

    Существование и число изомеров данного ядра зависит от его массы. Есть так называемые "островки изомерии", области масс атомов с большим числом изомеров. Связано это с заполнением ядерных уровней: в зависимости от того, насколько занят данный уровень, может быть больше или меньше сравнительно устойчивых вариантов его пространственного заполнения нуклонами, соответственно, — больше или меньше изомеров разной стабильности. Это объясняет, почему островки изомерии расположены возле стабильных магических ядер с их завершёнными уровнями. Это же объясняет, почему изомеры обычно встречаются у ядер с нечётным числом протонов и нейтронов [135]. Чётное число нуклонов разбивается на пары: частицы оказываются попарно связаны в слоях, так же, как электроны. Это происходит потому, что число мест в слоях, в том числе и вдоль периметра, — чётное, и тем или иным способом спаренные нуклоны могут образовать устойчивую, завершённую или этапно-завершённую конфигурацию слоя. Зато, при наличии неспаренного нуклона частицы могут свободно перемещаться в слое, как фишки в пятнашках, образуя разные конфигурации-изомеры. Связь изомерии с пространственным размещением нуклонов в ядре прослеживается хотя бы у 180Hf, у которого была отчётливо выявлена различная форма ядер изомеров. И, всё же, несмотря на то, что даже само слово "изомер" говорит о том, что явление связано с различным пространственным размещением нуклонов в ядре, физики, опираясь на разработанную Вейцзеккером квантовую теорию изомерии, считают, что изомеры — это лишь возбуждённые метастабильные состояния жидких бесструктурных ядер.

    В целом, атом строится так: возводится бипирамидальный каркас, остов атома, и его раструбы послойно заполняются сначала протонами и нейтронами, затем электронами (Рис. 112, Рис. 113). И снова минимум энергии достигается при целиком заполненном слое, равно, как в кристалле, целиком заполненная атомами грань обеспечивает кристаллу минимум энергии и устойчивость, отчего их и находят в природе. Так, и среди ядер более стабильны ядра с полностью укомплектованными слоями протонов и нейтронов, — магические ядра. Они самые прочные, инертные и плохо взаимодействующие с пучками нейтронов. А среди атомов всего прочнее и химически устойчивей атомы инертных газов, с их полностью укомплектованными слоями электронов. Как видим, аналогия с кристаллами полная. Странно, что учёные, осознав высокую устойчивость целиком заполненных электронных слоёв, не провели параллель с устойчивостью заполненных атомных слоёв кристалла. Впрочем, учёные-классики — Дж. Томсон, Дж. Льюис, И. Ленгмюр, которые впервые и выдвинули идею электронных оболочек-слоёв, связали их стабильность именно с совершенной, целиком заполненной геометрической формой куба [49]. Лишь поздней эту мысль отвергли и перешли к абстрактным квантовым уровням, не имеющим геометрической интерпретации: в квантовой механике уровни и квантовые числа вводятся совершенно искусственно и формально.

    Итак, именно модель атома Ритца пролагает мостик от атомных, химических свойств к ядерным, к свойствам элементарных частиц. Это ещё раз доказывает, сколь эффективны наглядные геометрические представления об атоме и атомном ядре. Ещё древние греки, открывшие фигурные числа, считали геометрию основой мира. Великий инженер Архимед особо ценил свои геометрические открытия, хотя был автором физических законов и удивительных машин. Подчёркивал особую роль геометрии и Пифагор, наделявший атомы конкретной формой многогранников. Так же, и Платон, удивительным образом предугадавший геометрическую форму атомных пирамидок, выше всего ставил геометрию, сделав соответствующую надпись над входом в свою Академию (§ 5.3). Нынешняя физика микромира много потеряла, отвергнув наглядные представления и чертежи, образный, геометрический, инженерный стиль мышления, подменив его абстрактно-аналитическим: формулами квантовой механики и теории относительности, лишёнными физического смысла и образа. В ходе формализации не только была утрачена наглядная адекватная картина мира, но и усложнились расчёты. Аналитическое решение многих задач микромира столь трудоёмко и громоздко, что даже ЭВМ не может с ними справиться. Пытаться понять с помощью формального, негеометрического описания устройство атома и микромира столь же безнадёжно, как силиться понять работу часов, не разобравшись в их сути, механизме, подменив их набором формул, отражающих движение стрелок. Вот почему, в физику атома, ядра и элементарных частиц давно пора вернуть геометрию. Как увидим ниже, геометрия оказывается крайне удобной и для понимания строения элементарных частиц (§ 3.9).

    § 3.7 Ядерные спектры и эффект Мёссбауэра

    При максимально возможной опоре на механику или электродинамику необходимо указать физически наглядные математические операции, интерпретация которых через колебания подходящей модели приводит для неё к законам сериальных спектров; она должна позволить улучшить эмпирические формулы, упорядочить их с единой точки зрения и открыть новые законы.

    (Вальтер Ритц, "Теория спектральных серий" [9, 50])

    Выше было показано, что разгадка строения атома сразу объясняет механизм генерации характерных атомных спектров элементов (§ 3.1, § 3.2). Точно так же, установление в предыдущем разделе строения ядер должно автоматически прояснять и природу ядерных спектров. Было открыто, что атомные ядра при возбуждении, скажем, — от перестройки ядер или от соударений, начинают испускать гамма-излучение строго определённых частот, характерных для данного ядра. То есть, подобно линейчатым атомным спектрам, существуют ядерные, имеющие много большие частоты. Во всех случаях спектр излучения генерируется вибрирующими электрическими зарядами. Так, крутящиеся электроны генерируют атомные спектры. Но в ядрах электроны находятся в связанном состоянии: они входят в состав электрон-позитронной решётки остова ядра. Поэтому ядерные спектры должны генерировать колеблющиеся протоны ядер. В самом деле, протоны тоже могут пошагово смещаться вдоль узлов электрон-позитронной решётки, оказываясь каждый раз в новом, строго заданном магнитном поле. Колеблясь в нём, они испускают излучение дискретно меняющихся частот. Характерная частота этих колебаний, которую легко рассчитать из данной модели, по порядку величины вполне соответствует частотам гамма-спектров ядер. И, опять же, поскольку каждое ядро имеет своё особое, неповторимое строение, эти спектры будут сугубо индивидуальны для разных ядер и эквивалентны для одинаковых ядер. Именно это свойство стандартной структуры спектра используют в эффекте Мёссбауэра. Он состоит в том, что ядра поглотителя эффективно поглощают гамма-излучение источника только в том случае, если излучение испускают ядра того же типа, а приёмник неподвижен относительно источника.

    Выше мы видели, что электронные слои в атоме и нуклонные слои в ядре заполняются по сходному принципу и, по сути, заданы единой структурой (§ 3.3, § 3.6). Подобие атомных и ядерных структур отражено и в спектрах. Выше рассмотрены атомные спектры, порождаемые колеблющимся электроном в возбуждённом атоме. При этом, каждому атому отвечал свой особый линейчатый спектр, — индивидуальный "штрихкод атома". Точно так же, существуют характерные ядерные спектры возбуждённых ядер. И атомные, и ядерные спектры излучаются при колебаниях зарядов, но, если в атоме это — электроны, то в ядрах — протоны. Они тоже колеблются с жёстко заданными, индивидуальными для каждого типа ядер частотами в магнитном поле атомного остова (Рис. 115). Как выяснили, постоянная Ридберга R=h/16?2ca2M (§ 3.1). Поскольку заряды колеблются в одном и том же атомном остове, различие будет лишь в шаге a электрон-позитронной сетки и массе M генерирующего заряда. Ранее было найдено, что расстояние между узлами, в которых колеблются электроны атома, составляют порядка размеров атома: a?a0=0,53?10–10 м, то есть порядка одного ангстрема (1 A=10–10 м). Точно так же, расстояния между узлами, в которых колеблются протоны, составляют порядка размеров ядра и классического радиуса электрона, который как раз и задаёт шаг электрон-позитронной сетки: a?r0=2,82?10–15 м, то есть порядка одного ферми (10–15 м). Раз в ядрах расстояния a?r0 меж электронами и позитронами в 104–105 раз меньше расстояний a?a0 в электронных слоях, а масса M протона в 2000 раз больше электронной, то R для ядер выйдет в 105–106 раз больше.

    Рис. 115. Два масштаба сил и спектров. Протоны p в узлах мелкой сетки генерируют в магнитном поле уголка ядерные спектры, а электроны e в узлах крупной сетки дают атомные спектры.


    Соответственно, характерные частоты f~R ядерных спектров в 105 раз выше атомных. И, — точно, ядерные спектры лежат в рентгеновском и гамма-диапазоне 1016–1019 Гц, тогда как атомные, лежащие в инфракрасном и оптическом диапазоне 1011–1015 Гц, имеют на 5 порядков меньшие частоты. Итак, схожая структура спектров, в виде ряда дискретно меняющихся частот, характерных для данного ядра или атома, говорит о едином механизме их генерации. Разница лишь в масштабе сеток, между узлами которых смещается генерирующий заряд. И, если атомные спектры дают ключ к разгадке строения атома, то ядерные — к строению ядер.

    Рассмотренный механизм генерации ядерных спектров, судя по всему, не единственный, поскольку ядра излучают не только от возбуждения ударами, но и при возбуждении в процессе ядерных реакций и при спонтанном переходе из одного состояния в другое. Такое гамма-излучение генерируют, вероятно, уже не колебания отдельных протонов, а колебания отдельных частей ядра, имеющие, подобно колебаниям молекул или грузов на пружинке, жёстко заданные частоты, о чём будет рассказано ниже (§ 3.13). Излучение ядер может возникать и от резкого торможения соударяющихся ядер, в случае неупругого удара, порождая огромные ускорения. А ускоренно движущееся заряженное ядро, по законам электродинамики, должно излучать электромагнитную энергию. Тогда, вся кинетическая энергия сталкивающихся ядер может преобразоваться в энергию излучения, отчего такой удар и называют неупругим.

    Возникает гамма-излучение и при перестройке протон-нейтронной структуры, то есть, при спонтанном переходе из менее устойчивого структурного состояния — в более устойчивое. Как было показано в предыдущем разделе (§ 3.6), нуклоны могут располагаться в ядре различным образом. При этом, разным способам размещения соответствует разная энергия связи, так что переход из одного состояния в другое, более устойчивое, сопровождается выделением соответствующей энергии в виде гамма-излучения. Ведь, при такой перестройке ядра, перемещаемые нуклоны механически встряхиваются, начиная колебаться в магнитном поле ядерного остова, излучая гамма-лучи. Причём, для каждого ядра, для каждой реакции, опять же, свойственны свои характерные частоты излучения. По аналогии с атомами, ядра на тех же частотах сильнее всего и поглощают излучение. Такая строгая индивидуальность, жёсткая определённость частот гамма-излучения, аналогичная наличию характерных линий в атомных спектрах, находит применение на практике, в качестве эталонных частот, для сравнения параметров излучателя и поглотителя и выявления ничтожных сдвигов частоты, вызванных движением источника и релятивистскими эффектами. Чаще всего, применяют упомянутый эффект Мёссбауэра, измеряя степень поглощения гамма-излучения от источника поглотителем. Эффект Мёссбауэра позволяет выявлять тончайшие сдвиги частоты от движения источника и поглотителя и других влияющих на частоту эффектов.

    Кстати, в эффекте Мёссбауэра сталкиваемся с ещё одним провалом квантовой теории, которая предсказывала, что эффект не может наблюдаться ввиду большого импульса отдачи, получаемого ядром при испускании гамма-кванта и меняющего частоту излучения, исключая его резонансное поглощение другим ядром [135]. Но, вопреки квантовой теории, эффект Мёссбауэра всё же был открыт на опыте, в очередной раз посрамив кванторелятивистов и доказав, что излучение исходит не отдельными порциями-квантами, а — классической сферической волной, симметрично расходящейся во все стороны и потому не вызывающей отдачи. Также, именно эффект Мёссбауэра позволяет установить важную связь строения молекул, атомов, их электронных оболочек и оптических спектров — с ядерными свойствами этих атомов и спектром их гамма-излучения, о чём говорилось выше (§ 3.6) и ещё будет сказано ниже (§ 4.16).

    § 3.8 Состав и масса элементарных частиц

    Последовательная теория элементарных частиц, которая предсказывала бы возможные значения масс элементарных частиц и другие их внутренние характеристики, ещё не создана.

    (Советский Энциклопедический Словарь)

    В настоящее время известно более сотни элементарных частиц [85, 86]. Это изобилие давно привело к мысли, что частицы отнюдь не элементарны, а состоят из ещё более простых элементов. Полагали, что этими элементами должны быть кварки, — гипотетические частицы с невероятными свойствами. Так, любой из кварков много тяжелей частицы, которую они образуют: часть больше целого! Поэтому многие считают, что гипотеза кварков и так называемая квантовая хромодинамика — это чисто формальный способ систематизации частиц. Ну, а такая фундаментальная характеристика частиц как масса, почему-то игнорируется учёными. А, ведь, именно массы позволили Д.И. Менделееву навести порядок в мире химических элементов, среди многих десятков которых царил некогда такой же хаос. На основе известных масс элементов не только была построена их система (таблица Менделеева), но и понято строение атома. Далее покажем, что и для понимания строения элементарных частиц их масса и закон её сохранения, вводимый БТР, может иметь ключевое значение.

    Прежде всего, естественно допустить, что наиболее просты и элементарны частицы, обладающие наименьшей массой (так и среди атомов самый простой — водородный). К ним можно отнести электрон, массу М которого обычно берут за единицу измерения масс других частиц (М=1), и мельчайшие из мезонов [86]. А, именно, мюон (?-мезон) — заряженная частица, которая тяжелей электрона в 207 раз (M=207), нейтральный пион (?0-мезон, M=264) и заряженный пион (?+- или ?-мезон с M=273). Думается, именно из этих частиц, как из деталек конструктора, и построены все прочие элементарные частицы, имеющие более высокие значения массы.

    И, точно, беря эти три вида мезонов в разных сочетаниях, можно получить массу любой другой частицы. Например, два заряженных и два нейтральных пиона дают в сумме массу 1074,4. Это с точностью до 0,04 % совпадает с массой ?0-мезона (M=1074). Так что, эта частица состоит, вероятно, из четырёх пионов: ?+, ?, ?0, ?0. Недаром, ?0-мезон распадается всегда именно на пионы. Другой пример: 8 заряженных пионов дают в сумме массу 273?8= 2184 — это масса ?0-гиперона, отличная от истинной всего на 0,03 %. Значит, лямбда-гиперон состоит из четырёх положительных и четырёх отрицательных пионов: ?0=4?+ + 4?.

    Судя по точности и частоте таких совпадений, они — не случайны и должны открыть тайну строения частиц. Для этого достаточно составить несложную компьютерную программу, по-разному комбинирующую массы трёх мезонов (M=207; 264; 273) и находящую совпадения их сумм с известными массами элементарных частиц. Результаты поиска программы сведены в систему (Таблица 2). В первой колонке стоит обозначение частицы, в следующих трёх — её состав (по числу мезонов), в пятой — расчётная масса, в шестой — измеренная, в седьмой — их разница в процентах, не превосходящая 0,2 %.

    Из таблицы видно, что некоторые частицы (?0, ?*, ?*, ?, ?) можно представить несколькими комбинациями — разными наборами мезонов. Как легко заметить, причина этого в том, что сумма масс 4-х мюонов и ?0-мезона почти равна массе 4-х заряженных пионов (M=1092). Это означает, что и сами мезоны — это не элементарные, а составные частицы. Так, нейтральный пион должен, видимо, состоять из четырёх нейтральных частиц, имеющих массу 264/4=66 масс электрона. И каждая такая частица в сочетании с мюоном образует заряженный пион с массой M=207+66 =273 (Рис. 116).

    Рис. 116. Состав и схемы распада пионов, следующие из соотношения их масс.


    Эти частицы с М=66 пока никем не найдены, поэтому считают, что при распаде нейтрального пиона его масса просто исчезает, полностью переходя в гамма-излучение. Согласно БТР, это невозможно (§ 1.16), и, потому, при распаде пион должен делиться на те самые 4 частицы с М=66, которые лишь потому не открыты, что нейтральны и не оставляют следов в детекторах частиц, если только не считать их следами гамма-излучение. В дальнейшем будем для удобства называть эти частицы "гамма-мезонами" (или "гаммонами"), обозначая греческой ?, ввиду того, что эти продукты распада пионов долгое время принимали за гамма-кванты. В ядерной физике такое случалось и прежде: рождённые распадом нейтроны из-за их нейтральности и трудноуловимости тоже поначалу приняли за гамма-кванты. Наличие гаммона и мюона в составе заряженного пиона подтверждается тем, что последний при распаде образует мюон. Оставшаяся масса 273–207=66, как считают, переходит в энергию. Но, с позиций классической физики, в которой масса сохраняется, следует считать, что эту массу незаметно уносит гаммон.

    В таком случае, разные варианты устройства одной и той же частицы окажутся эквивалентны. К примеру, уже рассмотренный ?0-гиперон состоит просто из 8-ми мюонов и 8-ми гаммонов, а лишние варианты отпадут. У иных же частиц, напротив, не нашлось даже одного точного способа представления комбинацией мезонов. Таковы нейтрон n, K-мезоны, ?0-гиперон и некоторые из частиц-резонансов. Есть, правда, сочетания мезонов, дающие массу почти как у этих частиц (с разницей примерно в 1 %). Однако, неидеальность таких совпадений говорит об их случайности, и программа отсеивает эти варианты, как маловероятные.

    Но мы не учли другой возможности. Ведь в мире, помимо частиц, существуют античастицы, такие как позитрон, имеющие, возможно, отрицательную массу (§ 1.6). Раз масса — это количество материи, то у антиматерии масса — минусовая (§ 1.17). Этим же, с позиций классической физики и закона сохранения массы, можно объяснить бесследное исчезновение масс при аннигиляции частиц и античастиц, или, напротив, их рождение. Если в состав частицы, наряду с мезонами, иногда входят антимезоны, имеющие минусовую массу, то числу мезонов в частице можно придавать и отрицательные значения, что породит новые варианты. К примеру, 6 мюонов и один нейтральный антипион дают в сумме массу 206,7?6–264=976,1, что, с погрешностью в 0,2 %, совпадает с массой K0-мезона (M=974,1). А 6 мюонов в сумме с заряженным антипионом дают массу 206,7?6–273,1=967,1 одного заряженного K+-мезона (M=966,4), с погрешностью в 0,07 %. Поэтому, Таблица 2 дополнится новой (Таблица 3), где знаки минус соответствуют античастицам с антимассой.

    Как видим, допустив существование отрицательной массы, можно и оставшиеся частицы представить в виде наборов из 3-х типов мезонов. Причём, античастиц в любом наборе — не больше двух. Если же все пионы разбить на гаммоны и мюоны (?0=4?; ?+=?+?) и представлять каждую частицу в виде набора из двух типов мезонов (? и ?), то во многих из таких комбинаций отрицательные массы исчезнут. Так, ?+=7?+5?; ?=?+11?; ?0=17?+7?. А в оставшихся случаях от минусовых масс можно избавиться, допустив, что гаммоны есть и в составе мюонов, то есть мюоны — сами составные. Действительно, как увидим в дальнейшем, вполне можно обойтись без минусовых масс, которые до сих пор служили лишь удобным формальным приёмом, и в дальнейшем будут совершенно упразднены (§ 3.20). И позитрон, и другие античастицы имеют положительную инертную и гравитационную массу (§ 1.17). Поэтому, масса частицы всегда складывается из положительных масс образующих её частиц, в том числе электронов и позитронов.

    Так или иначе, массу любой частицы всегда можно представить в виде M=66x+207y, где x — число ?-мезонов, а y — ?-мезонов. Придавая x и y различные целые значения, — составляя разные сочетания ?- и ?-мезонов, по-разному комбинируя их, — можно предсказать новые частицы, по крайней мере, узнать их массы. Впрочем, не всякая комбинация мезонов реализуется в природе, поскольку не все такие комбинации устойчивы. Точно так же, теоретически возможны ядра, состоящие из любого числа протонов и нейтронов. Однако, лишь редкие их сочетания оказываются стабильными, устойчивыми. Другие сочетания-изотопы, хоть и менее стабильны, но тоже живут некоторое время. А все прочие сочетания протонов и нейтронов крайне неустойчивы и распадаются почти мгновенно. То же и у сочетаний мезонов: одни из образованных ими элементарных частиц живут сравнительно долго, другие — малоустойчивы и сразу распадаются. Таковы, например, частицы-резонансы (?, ?, ?-частицы и все помеченные звёздочкой).

    Может удивить, что в распадах, помимо мезонов, возникают и более крупные частицы. Но это — естественно, если фрагменты, на которые делится частица, состоят из нескольких мезонов. Ведь и тяжёлые атомные ядра при распаде делятся не на десятки отдельных протонов и нейтронов, а на образованные из них сравнительно крупные осколки (Рис. 114). Потому и продукты деления тяжёлых частиц — это, в основном, другие тяжёлые, составные частицы (Рис. 117). А возникающие в распадах пионы и мюоны — это лишь дополнительные мелкие осколки (вроде нейтронов, вылетающих при делении тяжёлых ядер). Образуются и совсем незаметные осколки деления (к примеру, гаммоны), чем вызвано кажущееся уменьшение массы в распадах.

    Рис. 117. Распад ядра или элементарной частицы на осколки разной величины, идущий двояким путём.


    Кроме соответствия массы, в комбинации надо обеспечить соответствие заряда. Поэтому, в комбинации мезонов, представляющей нейтральную частицу, должно быть поровну положительных и отрицательных зарядов. Например: ?0=2?0+?+?+; ?0=4?++4?. Если же число зарядов нечётное, то комбинацию можно сделать нейтральной, дополнив её одним электроном или позитроном. Зато, в составе заряженной частицы зарядов одного знака должно быть на один больше, чем другого. В этом случае, комбинации с чётным числом зарядов надо дополнить электроном или позитроном. Добавление этих частиц с M=±1 мало влияет на полную массу комбинации, поэтому, до сих пор мы их не привлекали: их назначение — обеспечить в первую очередь соответствие заряда, а не массы. Так, частицы-резонансы (?, ?*, ?*, ?*, ?*), имея строго заданную массу, могут обладать зарядом 0, ±1, ±2,— всё зависит от числа электронов и позитронов в комбинации. Тем, что помимо мезонов в каждую частицу могут дополнительно входить ещё несколько электронов или позитронов, можно объяснить и небольшие (порядка единицы) расхождения между расчётными и измеренными массами. Вообще же, массы некоторых частиц, особенно резонансов, известны с заметной погрешностью.

    При делении частицы образующие её мезоны могут разбиться на разные сочетания. Такая частица распадается несколькими путями: в одних случаях давая одни продукты, в других — другие (Рис. 117). Физики считают это доказательством превращения частиц, — совсем как алхимики, видевшие в химических реакциях превращения веществ, хотя реально шла лишь перегруппировка атомов. Аналогично, "превращения" частиц вызваны перегруппировкой мезонов: мезонный состав частицы можно разбить на две-три группы разными способами, эти группы образуют разные частицы. В конце концов, ведь и тяжёлые ядра распадаются несколькими путями. Какие из частиц возникают в распаде чаще, зависит от устойчивости данных сочетаний мезонов, от энергии их связи в частице, а, значит, и от энергии распада.

    Итак, выяснили, что почти все частицы построены из мезонов. Даже экспериментально мезоны были найдены, скажем, — в нейтронах, в форме окружающей их мезонной оболочки и отдельных точечных зарядов (партонов), на которых происходило рассеяние при зондировании [165]. Сами мезоны тоже не элементарны, и могут быть, в свою очередь, образованы электронами и позитронами (§ 3.9).

    Теперь видно, насколько эффективны классические представления БТР — и в микромире. Именно они ведут к пониманию структуры элементарных частиц, чего не позволяла сделать квантовая механика. Ещё Дж. Фокс [2] указал на огромный потенциал теории Ритца в объяснении явлений микромира. По мнению Фокса, большой объём эмпирических данных: масс, времён жизни, структур элементарных частиц, — может найти истолкование именно в теории Ритца. Но из-за слепой веры учёных в теорию относительности, отказа от закона сохранения массы, открытого Ломоносовым (§ 3.13), современная наука не в силах объяснить точных соотношений между массами частиц и показать, почему масса данной частицы такая, а не иная. А для БТР это не проблема, так же, как и кинематика высоких скоростей, и дефект масс, и прочие законы микромира, возможные якобы лишь по СТО. И, хотя некоторые ядерные эксперименты приводят в качестве опровергающих БТР [153], они противоречат теории Ритца не больше, чем космические наблюдения (Часть 2). Дж. Фокс показал, что несоответствие чаще возникает не по вине БТР, а от неразвитости наших представлений о микромире и космосе. Привлекать явления для проверки теории Ритца можно, лишь пересмотрев их на её базе. А, если БТР раскроет строение частиц, к примеру, — нейтрона, то сразу откроются и новые источники энергии (§ 5.8).

    § 3.9 Кристаллическое строение элементарных частиц и их распады

    А если и в самом деле, протоны и нейтроны как кирпичики ядерных конструкций сложены из электронов и позитронов?… то могли же нуклоны возникнуть в виде кубических квазикристаллических образований, аналогичных известным кристаллам… Электроны с позитронами ещё не эфир, но во всяком случае — та промежуточная материя, из которой построены и кирпичи — нуклоны и ядра всех элементов, и сотен видов осколков из них, так называемых "элементарных" частиц.

    (В. Мантуров, "Ядерные силы — предложение разгадки" [79])

    Выше было показано, что элементарные частицы совсем не элементарны, а состоят из немногих видов более простых кирпичиков, равно как сотню химических элементов-атомов образуют три типа частиц: электроны, протоны и нейтроны. Элементарные частицы и атомы — элементарны, неделимы, лишь пока не достигнуты энергии достаточные для их деления, разрушения. Так же, кирпичная стена выглядит монолитом, пока не ударишь так, что она рассыплется на кирпичи. Вот и атомы, что значит "неделимые", называют так в том смысле, что при земных температурах их обычно можно считать элементарными частицами материи. Элементарность, неделимость — понятия условные, верные лишь в данном диапазоне энергий. Материя бесконечно делима: каждая частица может быть разбита на более простые, в свою очередь, состоящие из других. В бесконечной делимости не больше странного, чем в бесконечной протяжённости пространства и времени. У мира нет пределов вширь, вдаль и вглубь (§ 2.6)! Эту материалистическую идею развивали ещё К. Циолковский, Э. Вихерт. Да и другой поборник материализма не зря сказал век назад, что электрон так же неисчерпаем, как и атом, ибо природа бесконечна.

    Учёные, однако, верят, что частицы — элементарны, хотя даже процессы распада (скажем, нейтрона — на протон и электрон) доказывают, что частицы — составные. Отсюда и слово "распад". Но, почему-то, сочли, что происходит не распад, а волшебное превращение одних частиц в другие, словно нет частиц более простых, и каждая частица состоит из всех прочих. Эта абсурдная идея, названная теорией бутстрапа (частицы зашнурованы, замкнуты сами на себя [165]), совершенно ненаучна и сродни домыслам тёмных алхимиков, тоже считавших, что в химических реакциях вещества превращаются друг в друга, хотя в действительности шло лишь деление и слияние молекул. Это было простительно прежним алхимикам, не знавшим о дискретной структуре вещества. Но нынешним алхимикам-ядерщикам, занимающимся трансмутацией материи и верящим, что в ядерных реакциях частицы волшебным образом обращаются друг в друга, повторять их ошибку недопустимо.

    Впрочем, желание физиков систематизировать элементарные частицы заставило их выдумать кварки, из которых, якобы, составлены частицы. Но, во-первых, ввели уже десятки кварков, а элементарных типов кирпичей должно быть немного. Во-вторых, кварки ввели формально, наделив нелепыми свойствами: дробным зарядом и гигантской массой. В-третьих, они до сих пор не найдены [165]. Поэтому кварки — та же мистика, что и превращение частиц.

    Выше мы видели, что гораздо естественней каждую элементарную частицу представлять в виде набора всего трёх типов мезонов. Но, ведь, и мезоны отнюдь не элементарны, а состоят из ещё более мелких частиц. А, поскольку, наука уверенно определила пока только две частицы, имеющие массу, меньшую мезонной, — это электрон и позитрон, то естественно предположить, что именно из этих частиц составлены, в конечном счёте, ядра, протоны, мезоны и все прочие частицы [124]. Тем более, что мы уже видели, насколько удобно представлять ядра и атомы составленными из периодично расположенных электронов и позитронов (§ 3.2). Так, В. Мантуров предположил, что электроны и позитроны, притягиваясь друг к другу, способны сливаться не только в пары, но и в крупные конгломераты: ядра, протоны и нейтроны, насчитывающие тысячи частиц и представляющие собой своего рода кристалл из чередующихся электронов и позитронов, вроде кристалла соли. Не зря, именно из ядер гамма-излучение выбивает электрон-позитронные пары [85], подобно обычному свету, вырывающему электроны из металла. То есть, гамма-излучение не превращается в частицы, а лишь выбивает, разделяет уже существующие в ядрах пары, иначе рождение таких пар было бы возможно и в вакууме.

    Поэтому, лучшие кандидаты в стройматериал для материи — это частицы с наименьшей массой и зарядом, то есть электроны и позитроны. Только этим частицам-кирпичикам присущ собственный элементарный заряд, масса и магнитный момент, лишь их наличие в составе придаёт эти характеристики другим частицам. Электрон и введён был как элементарный отрицательный заряд e-, а позитрон (антиэлектрон) — положительный e+. Из них сложены заряды всех тел и частиц, оттого заряд и кратен заряду электрона. Лишь спустя время все частицы (например, протон) стали наделять самостоятельным зарядом, хотя неясно, с чего ему быть таким же по величине, как у электрона. Модель постройки частиц из электронов и позитронов наиболее проста и естественна, поскольку:

    1) фундаментальных частиц всего две — e+ и e-;

    2) заряд частицы равен сумме зарядов образующих её e+ и e-;

    3) магнитный момент частицы равен векторной сумме магнитных моментов e+ и e-;

    4) масса частицы есть сумма масс её электронов и позитронов (оценочно их общее число равно массе частицы, измеренной в массах me). Ведь масса тела — это количество материи, по сути, число образующих его однотипных частиц (e+ и e-). Наконец, и объём частицы равен сумме объёмов всех её электронов и позитронов. Не зря, размер протона, сложенного из e+ и e-, порядка радиуса электрона — 10-15 м. Благодаря тому, что элементарные частицы составлены из плотно сцепленных электронов и позитронов, все они имеют равную плотность, отчего объём частиц пропорционален их массе [21]. Для ядер этот факт уже давно доказан [135].

    Тот факт, что все частицы, нуклоны и ядра составлены, в конечном счёте, из электронов и позитронов, подтверждается хотя бы их испусканием в распадах частиц или под действием гамма-лучей. Так, большинство лёгких радиоактивных ядер испытывают ?- либо ?+-распад, то есть испускают электроны e или позитроны e+. Отсюда следует, что электроны и позитроны входят в состав ядер, нуклонов и других частиц, отделяясь от них при распаде и облучении. Однако, их присутствие в ядрах и нуклонах отвергают на основании квантовой механики, по которой магнитные моменты нуклонов и ядер, а, также, энергии вылетающих электронов — отличались бы от измеренных [135, с. 35]. Но это лишь в рамках квантовой механики. Если же верна классическая физика и кристаллическая модель нуклонов, составленных из тысяч электронов, то никакого противоречия нет (§ 3.15). Наконец, сложную структуру протона и нейтрона, образованных из многих точечных зарядов, подтверждает характер рассеяния на них электронов высоких энергий. Фейнман назвал эти точечные заряды "партонами" [156, 165], хотя на деле это, видимо, всё те же электроны и позитроны в составе частиц [79].

    Итак, все "элементарные" частицы, на деле, отнюдь не элементарны, а состоят из более мелких, — мезонов или электронов. Что же удерживает все мелкие частицы-детальки в составе крупных? Как они расположены в сборной частице, какие пространственные структуры образуют? Выше было показано, что ядро, протоны и нейтроны имеют кристаллическую структуру — образованы из периодично расположенных в пространстве электронов и позитронов, образующих своего рода электрон-позитронную решётку. Кристалловидное строение должно быть свойственно не только атомам, ядрам, но и мезонам. В конце концов, раз есть кристаллы, построенные из атомов, то почему не быть кристаллам, образованным элементарными частицами, электронами и позитронами? Так же, как для атомов, клеем, цементирующим мезоны или электроны внутри кристаллов-частиц, будут служить электрические силы. Многие учёные уже считают, что ядерные и другие взаимодействия, удерживающие частицы, — это лишь частные проявления электрического взаимодействия [19, 79], так же как и магнетизм с гравитацией (§ 3.16).

    Из такого электрон-позитронного строения следует также, что масса частицы равна числу образующих её электронов и позитронов. Напомним: ещё Ньютон определял массу тел как количество заключённой в них материи, тем самым, как бы, вводя в соответствии с атомистическим учением Демокрита некие первоосновные точечные частицы единичной массы — "амеры" [31]. И если из них построены все прочие частицы, то масса любой из них — это число таких единиц в её составе. Этими частицами стандартной единичной массы, как видели, окажутся именно электроны с позитронами. Вот как эту идею Демокрита излагает Лукреций [77, с. 42]: "Есть предельная некая точка тела того, что уже недоступно для нашего чувства, то, несомненно, она совсем неделима на части, … ибо другого она единая первая доля, вслед за которой ещё подобные ей, по порядку сомкнутым строем сплотясь, образуют телесную сущность… И ничего ни отторгнуть у них, ни уменьшить природа не допускает уже, семена для вещей сберегая". Как видим, эти единичные частицы-семена (амеры Демокрита) в точности подобны электронам, так же имеющим стандартный вес, который не может уменьшаться (§ 1.5), и образующим, при соединении в правильном порядке, все прочие частицы и атомы.

    Правильная кристаллическая форма частиц микромира не только энергетически выгодна, но и объясняет, почему одинаковы свойства у частиц одного типа, скажем, у двух протонов: они похожи как кристаллы одного минерала. Насыпьте горсть кристаллов сахарного песка — и в этой россыпи пред вами будут сотни близнецов. Точное подобие формы кристаллов, их граней, идеальное равенство углов — не такую ли идентичность свойств мы наблюдаем у элементарных частиц? Собственно говоря, и Демокрит пришёл к идее атомов, наблюдая кристаллические зёрна горных пород, крупинки песка. Кристаллическая форма — единственно возможная для частиц микромира, мира порядка, идеального подобия структур.

    Итак, подобно ядрам и протонам (§ 3.2), из электронов и позитронов составлены, как из кирпичиков, и все прочие частицы — мезоны, гипероны, резонансы и т. п. При этом, электроны и позитроны составляют прежде блоки (мезоны), а уже из них строятся тяжёлые частицы. Мы, ведь, никогда не говорим, что автомобиль состоит из винтиков, гаек, деталек, сварных листов и т. п. Но показываем, что в нём есть двигатель, трансмиссия, шасси и кузов. Так и частицы правильнее подразделять не на сотни отдельных электронов и позитронов, а на образуемые ими крупные комплексы, блоки, то есть, — на более сложные и тяжёлые частицы. Выше было показано, что фактически любую частицу можно представить в виде набора трёх типов мезонов, комбинируемых в разных сочетаниях. Потом удалось свести их даже к двум, когда выяснилось, что ?-мезоны (пионы) — сами составные. Далее оказалось, что картину можно ещё упростить и исключить минусовые массы, если признать и ?-мезон (мюон) составной частицей, включающей в себя несколько гаммонов. То, что мюон составной, следует уже из его распада.

    Как легко видеть, гаммонов в мюоне может быть не более трёх. Ведь в сумме масса трёх гаммонов 66·3=198 немного не добирает до массы мюона, равной 207, или 206, если исключить массу электрона, придающего мюону заряд. Очевидно, остаток с массой, равной восьми электронным (8me), соответствует новой частице. Эту гипотетическую частицу можно назвать "окто-мезоном" (или "октоном" — по её массе), обозначив "О". Поскольку, она до сих пор не открыта, то, надо думать, она так же нейтральна, как гамма-мезон. Мешает её обнаружению и малая масса. Что касается заряда мюона, то, раз его образуют нейтральные гаммоны и октоны, он обязан содержать, сверх того, — один избыточный электрон (или позитрон, если речь идёт о положительно заряженном антимюоне). Именно этот электрон вылетает из мюона при его распаде (Рис. 118). Оставшаяся масса мюона, как считают, попросту исчезает. На деле же она сохраняется в виде трёх гаммонов и октона, — нейтральных, а потому незаметных. Напомним, что точно так же сохраняется в виде гаммонов и масса при распадах пионов (§ 3.8).

    Рис. 118. Предполагаемая схема распада мюона, его возможное строение и массы компонентов.


    Итак, если мюон состоит из трёх гаммонов, одного октона и одного электрона, его масса составит 66·3+8+1=207. Тогда нейтральный пион состоит из четырёх гаммонов, а заряженный пион будет состоять из четырёх гаммонов, октона и электрона. Так что, его масса M=66·4+8+1=273. Таким образом, заряженный пион отличается от незаряженного только наличием октона, сцепленного с электроном. Гаммон и октон тоже должны, в свою очередь, состоять из электронов и позитронов. Удивляет, однако, почему же именно эти сочетания элементарных зарядов образуют стабильные блоки в виде длительно не распадающихся частиц. В случае октона, ответ напрашивается сам собой: ведь 8 — это число, сопряжённое с высокой устойчивостью. Недаром, в таблице Менделеева восьмёрка играет столь важную роль, порождая восемь групп элементов и служа основным периодом повторения свойств элементов, подобно тому как в музыке через октаву повторяется звукоряд. Также 8 — это одно из шести магических чисел, — особо устойчивых сочетаний нейтронов или протонов в ядре (§ 3.6). Интересно отметить, что и БТР с "Луноходом" сконструировали восьмиколёсными именно для обеспечения устойчивости на пересечённой, "тряской" местности (Рис. 200). Подобная "тряска" действует и в мире элементарных частиц, подвергающихся постоянным ударам (§ 3.14). И, во избежание скорого крушения, частицам необходима геометрическая устойчивость.

    Причину такой "магичности" числа восемь легко понять. Ведь 8=23: именно восемь частиц образуют куб, размещаясь в его вершинах. Видно, так устроен и октон: из чередующихся в углах кубика четырёх электронов и четырёх позитронов. Заметим, что ещё И. Ленгмюр допустил способность восьми электронов, расположенных в атоме в вершинах куба, образовывать сверхстабильную структуру, чем объяснил периодичное повторение свойств элементов и апатичность инертных газов, с их целиком заполненными куб-оболочками (Рис. 106). Зато квантовая физика так и не объяснила толком, почему групп элементов ровно восемь. И лишь кристаллическая модель атома позволяет обосновать избранность восьмёрки, поскольку восьмивершинный куб и параллелепипед — это самая распространённая и простая форма кристаллической ячейки.

    Осталось выяснить, почему стабильным оказывается и гаммон, — частица с массой в 66 электронных. Если дело в устойчивости кристаллической структуры, то причина, возможно, в близости 66 к 64=43. Иными словами, 64 частицы составляют куб с ребром в 4 частицы. И он тоже будет стабильным, поскольку электроны и позитроны стали бы в нём чередоваться, словно положительные и отрицательные ионы в кубическом кристалле соли (Рис. 119). Таким образом, гаммон должен состоять из 32-х электронов и 32-х позитронов. Правда, непонятно, откуда берутся в гаммоне две дополнительные единицы массы. Но, учитывая, что масса его рассчитана теоретически, а не измерена в опыте, вполне может статься, что реальная масса — именно 64. К тому же, надо учесть, что взаимодействие электронов и позитронов, их сближение и движение отдельных частиц может приводить к неточному измерению их общей массы (§ 3.18).

    Рис. 119. Строение октона и гаммона, составленных из чередующихся электронов и позитронов.


    Раз мюоны и пионы — составные, то все прочие частицы, представленные их наборами, можно представить и в виде сочетаний более простых частиц. Поэтому, пользуясь прежними таблицами (Таблица 2 и Таблица 3, учтённые в колонке I) и тем, что ?=3Г+О, ?0=4Г, а ?—= 4Г+О, можно нарисовать более полную и точную картину микромира (Таблица 4), изображая все частицы в виде наборов гаммонов и октонов (колонка II). В таком представлении минусовые массы окончательно исчезают. Так, K+-мезон состоит из 14 гаммонов и 5 октонов, что даёт для него M= 66·14+8·5= 964 (реально M= 966). K0-мезон построен из 14 гаммонов и 6 октонов, откуда M=66·14+8·6= 972 (реально M= 974). Неточность возникает от округления масс гаммона и октона до ближайшего целого числа и неучтённых масс электронов и позитронов, дополняющих комбинацию. Но грубо массу любой частицы можно искать по формуле M=66x+8у, где x и y — это числа гаммонов и октонов в частице.

    Итак, все типы частиц можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8–9), дополненных иногда, для баланса заряда, электроном или позитроном. Существование гаммонов подтверждают реакции распада пионов, где бесследно исчезает масса, кратная 66 (Рис. 116). А реальность октонов следует из распада мюонов и того, что в семействах частиц (Таблица 4, выделены серым) массы M разнятся в среднем как раз на 8,5 единиц. Похоже, гаммоны и октоны, подобно нуклонам в ядре, выстраиваются в некие пространственные структуры, что объясняет стабильность одних частиц и нестабильность других. Мерой стабильности будет, как везде, степень симметрии, совершенства частицы, близости её к правильным геометрическим телам [21]. Частицы, структура которых несовершенна, — нестабильны и быстро распадаются. Так, и в природе: прочнее всего, тела, имеющие совершенную, кристаллическую форму. Менее прочны кристаллы с дефектами структуры. Наконец, наименее прочны аморфные тела. Всё это хорошо видно на примере кварца, кварцевого стекла и обычного стекла.

    Более стабильны сочетания, в которых число частиц равно кубу или квадрату целого числа (Рис. 120). Взять, к примеру, гаммоны или октоны, построенные, соответственно, из 64 и 8 частиц. Так же, и пионы, состоящие из 4-х гаммонов, образующих квадрат 2x2, живут заметное по меркам микромира время. По той же причине, достаточно стабилен ?-мезон, составленный из 4x4=16 гаммонов. Наиболее симметричен протон: в нём 27=33 гаммонов. Поэтому протон — одна из немногих стабильных частиц. Другая частица, у которой число гаммонов равно кубу, — это ?+-гиперон: 64=43 (Таблица 5). Вот почему эта частица, несмотря на большую массу, при которой стабильность обычно мала, обладает, всё же, заметным временем жизни.

    Рис. 120. Возможная структура элементарных частиц, состоящих из гаммонов, в свою очередь образованных электронами и позитронами.


    Пользуясь этим, можно предсказать новые частицы. Особая стабильность должна отличать частицу из восьми гаммонов, образующих куб, поэтому назовём её "кубоном", обозначив буквой "C" (Рис. 120). Однако, такая частица с M=66?8=528 до сих пор не открыта. Возможно, причиной тому её нейтральность и стабильность (от кубической структуры), что мешает её обнаружить, как и гаммоны с октонами. Правда, согласно книге Д. Данина [43], в арагацкой высокогорной обсерватории среди космических лучей некогда уверенно регистрировали частицы с массами около 300, 500 и 1000 электронных. Частицы с массой около 300 (?-мезоны) и 1000 (K-мезоны) действительно были впоследствии открыты. Однако частицы с M порядка 500 до сих пор не найдены. Так, может, это были кубоны? Их существование подтверждает и распад ?-мезона, который при делении на два заряженных пиона, бесследно теряет в весе как раз массу 528. Не кубон ли её уносит?

    Такой кристаллический подход к объяснению стабильности частиц позволяет понять, почему из всех частиц наиболее стабилен, прочен и долгоживуч протон. Таблица 4 сразу даёт на это ответ: только у протона число гаммонов x=27 составляет куб целого числа: 27=33. По-видимому, эти 27 гаммонов складываются в правильный куб, вроде кубика Рубика, тоже состоящего из 27 мелких кубиков. Что же касается шести октонов, то они, вероятно, выполняют в этом кубе связующую функцию (подобно тому, как в кубике Рубика есть шесть сцепляющих кубики шарниров) или располагаются на шести его гранях. Таким образом, лёгкие октоны могут играть внутри частиц ту же роль, что нейтроны в ядрах, будучи связующим звеном, цементом, прокладкой между блоками частиц. Могут они выполнять и функции гнезда, в котором крепко сидят электроны и позитроны, придающие частицам заряд. Учитывая сказанное, можно узнать строение и всех прочих частиц, сложенных из кубиков, наподобие игрушечных зданий (Рис. 121). Таким образом, частицы должны выглядеть не как шарики, а иметь углы, грани, кромки, совсем как кристаллы. Микромиру, равно как объектам макро-, да и мегамира, свойственно кристаллическое, ячеистое, клеточное строение!

    Рис. 121. Возможное строение протона и пионов, построенных из сотен электронов и позитронов, как кристаллы соли — из ионов Na+ и Cl-.


    Стоит отметить, что из одного и того же числа гаммонов и октонов, по-разному их соединяя, можно составить несколько устойчивых конструкций. Возможно, поэтому частицы данной массы и заряда встречаются в нескольких вариантах. Точно так же, и ядра, имеющие одинаковый протон-нейтронный состав, могут иметь разные свойства и периоды полураспада за счёт разного пространственного размещения в них протонов и нейтронов (§ 3.6). Так же, и в химии у молекул может быть идентичный атомный состав, но разные свойства. Химические свойства молекулы зависят не только от того, какие её составляют атомы, но и от того, в каком порядке они располагаются и какие пространственные структуры образуют, как было открыто ещё русским химиком А. Бутлеровым, и как было предсказано ещё до н. э. Демокритом и Лукрецием (§ 5.16). Это явление получило название изомерии, а частицы одинакового состава, но разных свойств были названы изомерами. Точно так же, как у молекул, есть изомеры у ядер (§ 3.6) и элементарных частиц. Так, K0-мезоны состоят из двух сортов частиц: K0S и K0L [86]. Равенство их масс, зарядов и магнитных моментов говорит об идентичности их электрон-позитронного состава, но располагаются электроны и позитроны в изомерах по-разному, что и ведёт к различию их свойств (времён жизни и типов распада). Возможен и такой случай, когда электроны и позитроны образуют одинаковые, но зеркально симметричные частицы, — зеркальные изомеры, также известные у органических молекул, например, у сахара, — как было открыто ещё Л. Пастером. Возможно, существование, в разной пропорции, правых и левых зеркальных изомеров частиц — ответственно за преимущественное испускание продуктов распада частиц в неком избранном направлении (§ 3.11).

    Как же возникает геометрически точная кристаллическая форма атомов, ядер и частиц? Разве не должна материя собираться под действием сил притяжения в компактные капли-шарики, какими любят представлять частицы? Природа их геометрически чёткой формы та же, что у кристаллов, правильные грани которых когда-то тоже удивляли людей. Видно, форма кристаллов и подсказала Платону идею частиц-многогранников (§ 5.3). Ровные плоские грани кристаллов возникают оттого, что они построены из одинаковых упорядоченно сложенных частиц, атомов. Правильное размещение частиц обеспечивает минимум энергии связи, к которому стремятся все системы. Атомам энергетически выгодней не надстраивать атомную плоскость, а дополнять атомные слои до ровных, контактируя с возможно большим числом соседей. Так и возникают правильные многогранные формы кристаллов.

    Если атомы, ядра и элементарные частицы и впрямь имеют структуру кристаллов, то и они должны быть составлены из множества однотипных упорядоченно расположенных частиц. И, точно, атом, как выяснили, сложен из ядра и электронов, образующих правильные конфигурации — слои, уровни, задающие чёткую структуру таблицы Менделеева (§ 3.3). Ядро, в свою очередь, образовано из протонов и нейтронов, расположенных так же упорядоченно, что подтверждают магические числа протонов и нейтронов, образующих особо стабильные ядра (§ 3.6). Наконец, сами протоны, нейтроны и прочие элементарные частицы — вовсе не элементарны, раз могут распадаться. Они образованы другими однотипными частицами, — электронами и позитронами, опять же сложенными в виде чёткой решётки. Проверить, так ли всё это на самом деле, можно с помощью метода, аналогичного рентгенографии обычных кристаллов. Направляя на одинаково сориентированные атомы, ядра и частицы пучок гамма-лучей с длиной волны порядка межэлектронного расстояния (10–15 м), удастся выявить по методу Лауэ дифракцию гамма-лучей на расположенных в правильном порядке элементарных частицах. Если на фотоплёнке возникнет дифракционная картина, то это докажет реальность кристаллического строения частиц. Изучая полученную лауэграмму, можно будет также точно рассчитать, как именно и на каком расстоянии расположены элементарные частицы, образующие более крупные кристаллические комплексы.

    Итак, именно геометрический, пространственный подход открывает истинную структуру элементарных частиц и позволяет понять многие их свойства. А квантовый подход — слишком сложен, условен, формален и совершенно не отражает реального устройства частиц. Такой кристаллический подход к строению и распаду частиц мог быть развит ещё век назад первым исследователем радиоактивности — Пьером Кюри. Именно Кюри как химик и физик много сделал для понимания свойств кристаллов и вскрыл важную роль симметрии. Кроме того, будучи исследователем атомного магнетизма и коллегой П. Вейсса, Кюри, наверняка бы принял кристаллическую магнитную модель атома Ритца и мог однажды приложить эти знания к объяснению распадов ядер. Но Кюри погиб в 1906 г. от несчастного случая в возрасте 46 лет, и развитие структурного, кристаллического подхода к радиоактивности задержалось на век. Лишь сейчас к учёным постепенно приходит понимание огромной роли геометрической структуры частиц и ядер. А, ведь, ещё в Древней Греции Платон и Пифагор осознали большое значение геометрии и правильных геометрических тел для познания микромира. На фоне нынешних учёных, одурманенных бесструктурной теорией относительности и квантовой физикой, даже эти древние греки выглядят не мистиками, а последовательными материалистами.


    § 3.1 °Cистематизация и периодический закон элементарных частиц

    Главный интерес химии — в изучении основных качеств элементов. А так как их природа нам ещё вовсе неизвестна и так как для них мы поныне твёрдо знаем только два измеряемые свойства: способность давать известные формы соединения и их свойство, называемое весом атома, то остаётся только один путь к основательному с ними ознакомлению — это путь сравнительного изучения элементов на основании этих двух свойств.

    (Д.И. Менделеев, "Основы химии" [98])

    Поняв строение элементарных частиц, можно уже пытаться их систематизировать и строить таблицу элементарных частиц, аналогичную таблице Менделеева. Такая таблица необходима не только для систематизации частиц, но и для установления связи их свойств, для уточнения известных и предсказания ещё неизвестных характеристик (масс, времён и типов распада), а также для предсказания новых частиц, которые будут находиться в пустующих клетках. Чтобы систематизировать частицы, нужно выбрать параметр, по которому будем производить систематизацию. Этим параметром, несомненно, должна быть, как в таблице Менделеева, масса частиц. И свойства частиц должны с увеличением массы периодически повторяться. Но в таблице Менделеева порядок расположения частиц задаётся всё же не самим весом, а числом протонов элемента, равным заряду ядра (вес же с увеличением атомного номера может в редких случаях и уменьшаться). Как было выяснено, подобно тому, как ядра всех элементов можно представить в виде сочетаний всего двух типов частиц, — протонов и нейтронов, так же и все элементарные частицы можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8–9) (Таблица 5). При этом, гаммоны аналогичны протонам, а октоны — нейтронам. И, раз гаммоны — это некий аналог протонов, то именно число гаммонов в частице должно задавать её положение в таблице. Как видно из этой новой, уточнённой таблицы, построенной на базе предыдущих, масса частиц и впрямь нарастает с увеличением числа образующих их гаммонов.

    Видим, что в некоторых случаях одному и тому же числу гаммонов соответствует несколько частиц. Эти частицы объединяются физиками в семейства, поскольку они имеют близкие свойства и массы. А предложенное представление частиц в виде сочетаний гаммонов и октонов позволяет понять природу этих семейств. Частицы семейства объединяет как раз одинаковое число гаммонов, — в этом и состоит причина сходства их свойств и масс. Отличаются частицы лишь числом октонов, потому и массы частиц во всех семействах отличаются в среднем на 8,5 единиц. Это хорошо видно по последнему варианту таблицы, где семейства (дублеты ?, K, ?, D, триплет ?) выделены полутоном. Ядерная физика объяснить таких стандартных скачков масс не могла. Частицы одного семейства, схожие свойствами и массами, — аналогичны изотопам одного элемента. Подобно тому, как у изотопов одинаковы числа протонов, но различны числа нейтронов, так же и частицы семейства, имея равные числа гаммонов, отличаются числом октонов.

    Особенно интересным становится такое представление элементарных частиц и их масс в виде M?66x+8у, если изобразить его на графике с осями x и y. Тогда каждая частица представится на плоскости точкой, координаты которой отвечают числу гаммонов x и октонов y в ней (Рис. 122). Этот план микромира открывает много интересных закономерностей. Так, он позволяет выявить дублеты и триплеты — группы частиц, расположенных одна над другой. Скажем, заряженный пион располагается точно над нейтральным, имея на один октон больше. Такие же пары, отличающиеся лишь одним октоном, составляют K+ и K0-мезоны, ? и ?0-гипероны, D+ и D0-частицы. Причём, характерно, что обычно заряжены в этих дублетах частицы, содержащие нечётное число октонов, а нейтральны те, в которых число октонов чётно. Это говорит о том, что октоны в частицах сцеплены с электронами и позитронами, а, потому, их можно рассматривать как заряженные. Кроме того, видно, что отдельные дублеты располагаются через равные интервалы в 10 гаммонов. Числа гаммонов в этих дублетах равны: 4, 14, 34, 54 (а также 38 и 58). Вдобавок, эти дублеты укладываются на некую кривую в форме баллистической траектории. Поэтому, можно предсказать ещё три дублета (их частицы помечены знаками вопроса). В одном 24 гаммона и 8–9 октонов, в другом — 44 гаммона, а в третьем — 48. И, действительно, частицы с такими числами гаммонов существуют. Поэтому рядом с ними однажды могут быть открыты и дополняющие дублет частицы.

    Рис. 122. Карта частиц микромира.


    Можно уловить на карте частиц и другие закономерности. Так, частицы явно кучкуются, тяготеют к определённым узлам и линиям, образуют ячейки-параллелограммы. Впрочем, для дальнейшего анализа следует привлечь все прочие, включая малоизвестные, частицы, установить их место на карте, а также уточнить местоположение (массы и состав) уже известных. Предстоит выявить связь места частиц на карте с их свойствами. Если это окажется ключом к разгадке микромира, то позволит в дальнейшем предсказывать и уточнять массы и свойства частиц, как это некогда позволил сделать периодический закон Менделеева. Кроме периодичности дублетов, аналогия здесь ещё и в том, что, если по таблице Менделеева масса атома тем выше, чем больше в нём протонов, то и в нашей таблице масса частиц растёт к концу таблицы с увеличением числа гаммонов. Впрочем, возможны и исключения, какие есть в таблице Менделеева (у элементов Ar и K, Ni и Co, Te и I). Ну а частицы с равным числом гаммонов, но разными массами (дублеты, триплеты и мультиплеты) — аналогичны изотопам, у которых тоже одинаково число протонов, но различны массы. И, если ядро любого атома представляет собой некое сочетание протонов и нейтронов, то и любая элементарная частица — это некое сочетание октонов и гаммонов. Не случайно, и для элементов таблицы Менделеева составлена подобная же карта, на которой по осям отложено число протонов и нейтронов в ядрах [11, 135]. Карты сходны наличием полос и островков стабильности, вне которых сочетания частиц крайне неустойчивы. В обоих случаях, наиболее стабильные частицы располагаются вдоль монотонно нарастающей кривой, проходящей через ноль и постепенно уменьшающей крутизну.

    Итак, построен в общих чертах план нижних этажей мироздания — путеводитель по микромиру. Это пока первая попытка систематизации на основе октогамонной модели частиц. Конечно, этот план ещё неточен, гипотетичен, нуждается в опытной проверке, доработке, а, может, и отбраковке (читатель волен составить собственный план). Но его преимущество в том, что, на базе немногих естественных гипотез, план позволяет единым образом описать все свойства микрочастиц (масса, заряд, магнитный момент, стабильность, типы распада), причём легко, наглядно, на базе классических моделей, — в пику квантмеху и теории относительности. В этом плане, как того и желал Ритц, электрические явления сведены к механическим и подобны ядерным.

    § 3.11 Частицы и античастицы, симметрия и асимметрия

    Много и после того, как мир народился, и после
    Дня появленья земли и морей и восшествия солнца
    Тел накопилось извне, и кругом семена накопились,
    В быстром полёте несясь из глубин необъятной вселенной…
    Вплоть до тех пор, пока всё до предельного роста природа
    Не доведёт и конца не положит вещей совершенству;
    Что происходит, когда собирается в жизненных жилах
    Столько же, сколько из них, вытекая наружу, исходит…
    Ибо, чем больше предмет оказался в конце разрастанья
    И чем обширнее он, тем и больше всегда выделяет
    Тел из себя, разнося их повсюду во всех направленьях.
    (Тит Лукреций Кар, "О природе вещей", I в. до н. э. [77])

    Проводя картографирование нижних уровней мироздания, следует учесть, что этаж элементарных частиц надо разделить на две противоположных, зеркально симметричных части: сектор частиц и сектор античастиц. Строение частиц прояснилось на основе геометрической модели их строения. Попробуем рассмотреть в геометрическом ключе и проблему античастиц. Если все частицы составлены, в конечном счёте, из электронов и позитронов (§ 3.9), то, строго говоря, античастица есть лишь у электрона: это позитрон. Именно эти две частицы будут ярко выраженными образцами материи и антиматерии. Ведь античастица — это не совсем антиматерия, а, скорее, частица, у которой всё наоборот: все заряды, образующие частицу, заменены противоположными. Электроны замещены позитронами, а позитроны — электронами. Однако, если у гаммона или октона заменить все частицы античастицами (вместо электронов поставить позитроны и наоборот), ничего не изменится (Рис. 119). Вот почему, некоторые нейтральные частицы не имеют античастиц: частица и античастица совпадают. Таковы нейтральный пион и ?-мезон. В них, как легко убедиться, инверсия знака зарядов (зеркальное отображение мира в антимир) даёт то же самое (Рис. 120). Выходит, лишь электроны и позитроны, придающие частицам заряд и магнитный момент, отличают частицы от античастиц. Так, если у мюона или протона заменить все электроны позитронами и, — наоборот, частица и античастица уже не совпадут, будучи отличны по числу электронов и позитронов, а, значит, и по знаку заряда. В протоне позитронов на один больше, чем электронов, а в антипротоне, имеющем отрицательный заряд, — на один меньше. То же и в мюонах ?+ и ?-.

    Рассмотрим теперь нейтрон. В нём число электронов равно числу позитронов. Поменяв их местами, казалось бы, ничего не изменим. Но, на деле, нейтрон и антинейтрон отличаются. Похоже, что электроны и позитроны располагаются в нейтроне не симметрично. Об этом говорит уже тот факт, что нейтрон обладает магнитным моментом, который исчезал бы при симметричном размещении частиц. Наличие структуры и асимметричное расположение зарядов разного знака у нейтрона доказано и его зондированием. Оно выявило в нейтронах точечные заряды, — партоны, причём в центре нейтрона больше положительных зарядов, чуть дальше от центра преобладают отрицательные, а на поверхности — снова положительные [165]. У антинейтрона структура обратная. Зато у ?-мезона, как легко видеть (Рис. 120), распределение зарядов симметрично, потому и нет у этой частицы заряда, магнитного момента и античастицы.

    О сложной пространственной структуре частиц говорит и асимметрия иных распадов: у многих частиц в магнитном поле бoльшая часть продуктов распада летит в неком избранном направлении. Эта асимметрия — следствие асимметричного строения частицы, ориентированной магнитным полем. Так, опыт показал, что ядра 60Co, ориентированные магнитным полем (направленным вверх), испускали электроны в ?-распадах преимущественно вниз (в 60 % случаев) [85, 86]. Та же асимметрия обнаружилась и в распадах элементарных частиц, таких как ?- и ?-мезоны, ?0-гиперон. Видно, процент распадов в данном направлении определяется формой, прочностью частицы в разных её участках или процентом частиц данной формы, испускающих продукты распада в данном направлении. Отметим, что В. Паули считал такую асимметрию невозможной, причём, — как раз потому, что принимал квантовую бесструктурную модель частиц и ядер. По той же причине он ошибочно отвергал идею спина, вращения частиц, имеющего прямое отношение к асимметрии их распадов (§ 3.19, § 5.7).

    Итак, античастицы — это ещё не антиматерия. В них почти поровну материи (электронов) и антиматерии (позитронов). Это следует из отсутствия пар у истинно нейтральных частиц и того, что лишь у электрона контакт с античастицей ведёт к аннигиляции. Так, при контакте нейтрона с антинейтроном они не исчезают, а образуют протон и антипротон (аннигилируют лишь входящие в них электрон и позитрон). Протон и антипротон при контакте тоже не исчезают, а образуют каскад пионов. Это — естественно, если протоны, как многие другие частицы, состоят из крупных блоков в виде мюонов и пионов, — обычных продуктов распада (§ 3.8). Выходит, раз в случае антипротонов нет аннигиляции, то их не следует считать антиматерией.

    И, всё же, античастицы из истинной антиматерии существуют: это позитроны и образующие их ареоны (§ 3.20). Какова же природа этой самой антиматерии, — материи и массы со знаком минус? По одной из гипотез, античастицы представляют собой те же частицы, только движущиеся назад во времени. Вот почему античастицы (позитроны) движутся под действием ударов потока реонов в сторону, обратную движению частиц (электронов). Впрочем, этот вопрос выходит далеко за рамки современной физики, поэтому рассмотрим его подробней ближе к концу книги (§ 5.6).

    Пока же отметим, что, возможно, эта временнaя асимметрия и порождает асимметрию свойств электронов и позитронов, от которой электроны часто встречаются в свободном состоянии и образуют оболочки атомов, тогда как позитроны в свободном состоянии отсутствуют, зато преобладают в связанном виде внутри ядер, протонов, придавая им положительный заряд. Объяснить эту асимметрию мира можно, вспомнив о возможной асимметрии параметров частиц (§ 1.17): если радиус электрона r, и он испускает в единицу времени N реонов, то у позитрона радиус чуть больше R=r+?, и испускает он ежесекундно n ареонов. Поскольку сила F=knr2 воздействия одного заряда на другой пропорциональна числу испускаемых первым частиц — на сечение (квадрат радиуса) второго (Рис. 45), то всего существует четыре разных силы:

    1) сила отталкивания электрона другим электроном F1=kNr2=knr2(1+2?/r+?2/r2);

    2) сила отталкивания позитрона другим позитроном F2=knR2=knr2(1+2?/r+?2/r2);

    3) сила притяжения электрона позитроном F3=knr2;

    4) сила притяжения позитрона электроном F4=kNR2=knr2(1+4?/r+6?2/r2).

    Причём, асимметрия, разница размеров, как нашли выше, составляет ничтожную величину ?/r=10–21 (§ 1.17). И, всё же, именно эта ничтожная разница, асимметрия размеров и сил, судя по всему, и приводит к асимметрии структуры нашего мира, порождая атомы с положительно заряженными ядрами — в окружении отрицательно заряженных электронов, которых много больше, чем свободных позитронов. Действительно, при указанном соотношении сил, позитрон всегда будет притягиваться нейтральной системой зарядов с удельной (приходящейся на единицу массы нейтральной частицы) силой W=F4F2=2knr?=2F?/r, а электрон будет отталкивается с удельной силой W=F1F3=2knr? (Рис. 123). Вот почему в нашем мире много электронов, образующих электронные оболочки атомов, а позитронов в свободном состоянии практически нет. По той же причине, ядра атомов заряжены положительно: в мире много протонов и крайне мало антипротонов.

    Рис. 123. Притяжение позитронов с удельной силой W к нейтральной системе, сложенной из сотен электронов и позитронов, ведёт к образованию протонов, а отталкивание электронов с силой W вызывает распад нейтронов.


    Электронов и позитронов во Вселенной, как говорилось, поровну (§ 1.6), но нейтральные частицы притягивают позитроны, образуя тяжёлые положительно заряженные частицы (протоны, ядра), и потому позитронов нет в свободном состоянии. А электроны, напротив, отталкиваются нейтральными частицами, и потому в нашем мире полно свободных электронов, образующих оболочки атомов, и нет свободных позитронов: все они связаны в протонах ядер. Эти силы W, нарушающие симметрию, крайне малы, но за необозримое время существования Вселенной они вполне могли привести системы элементарных частиц в состояние с наименьшей энергией, наблюдаемое ныне. Похожая ситуация имеет место и в мире атомов химических элементов: часть их пребывает в свободном, а часть — в связанном состоянии, за счёт разницы стягивающих атомы химических сил. Так, на Земле много свободного кислорода в виде молекул, атомов и отрицательных ионов, тогда как атомы водорода и его положительные ионы встречаются лишь в связанном виде (в составе воды и её кристаллов).

    Асимметрия свойств позитронов и электронов (Рис. 124) вызвана тем, что для них все процессы идут противоположно, причём у обоих есть стандартный критический радиус r0 (§ 1.5). Электрон, согласно Ритцу, постоянно сыплет реонами. Зато поглощать реоны, приходящие извне, он начинает лишь став меньше критического радиуса r0 (так и ядра хорошо поглощают протоны и нейтроны, лишь сократившись до критического радиуса, при котором синтез энергетически эффективен). Поэтому электрон теряет массу, покуда не съёжится до критического размера, а по его достижении, приток реонов уже компенсирует их утечку, и радиус r0 становится равновесным.

    Рис. 124. Асимметрия элементарных зарядов. Электрон и позитрон стремятся к равновесному радиусу r0, имея, один дефицит радиуса, а другой — его избыток.


    Так же поддерживается стандартный радиус r0 позитрона. Но, поскольку позитроны — полная противоположность электронов, то для них испускание реонов соответствует поглощению ареонов (антиреонов), а поглощение реонов — испусканию ареонов (испускание частиц эквивалентно поглощению античастиц [139]). И потому позитроны непрерывно поглощают ареоны, а, по превышении критического радиуса r0, начинают распадаться, испуская ареоны и теряя вместе с ними массу, пока вновь не съёжатся до равновесного радиуса r0 (так же и ядра имеют критический радиус, превысив который, они эффективно распадаются). В силу инерционности процесса, реальный радиус R позитрона всегда чуть больше равновесного r0, поскольку у возбуждённого состояния частиц есть конечное время жизни, запаздывания, по прошествии которого позитрон и начинает распад. Поэтому, прежде чем позитрон начнёт испускать ареоны, он успеет ещё немного поглотить их из внешнего потока. Распад позитрона всегда отстаёт от синтеза, отчего его радиус R чуть выше критического: R=r0+?/2.

    Электрон, напротив, постоянно испускает реоны, а поглощает их, лишь уменьшив радиус до r0, тем самым поддерживая размер возле этого равновесного значения. Но и здесь полное равновесие недостижимо: реальный радиус r=r0—?/2 электрона чуть меньше критического, поскольку, в силу инерции, синтез отстаёт от распада. Электрон и позитрон стремятся к равновесному радиусу r0 с разных сторон, и никогда его не достигают. Отсюда ясно, почему электроны испускают больше частиц N=n(R/r)2, чем позитроны. Электроны источают частицы непрерывно, а позитроны — очередями, по превышении радиуса r0. Выше нашли для электронов Nr2=e2/??0mc, а, раз эта величина константа, то и для позитронов nR2=e2/??0mc=Nr2. Электрон и позитрон, периодически испытывающие незначительные сжатия и расширения, как бы дышат, впитывая и испуская потоки реонов, что и поддерживает их стандартный размер. Так же и человек, несмотря на постоянное вдыхание и выдыхание воздуха, в среднем не меняет объём и массу, поскольку эти процессы точно сбалансированы. Интересно заметить, что ещё в Древней Индии сформировалась подобная идея Вечного Дыхания (вечного движения), исходящего из невидимого огненного зародыша, а после вновь поглощаемого им (см. "Станцы Дзиан"). Поскольку "огнём" древние часто называли электричество, а "дыханием" — эфир (акашу, § 3.21), излучаемый неким источником, то не есть ли это символическое представление электрона, испускающего и впитывающего потоки реонов?

    Не случайно идею такого динамического поддержания равновесного размера тел давно выдвигал и ученик индийских мудрецов, Демокрит (см. эпиграф § 3.11), который тоже связывал это с направленным течением времени. По сути, он изложил модель постоянно испускающего частицы электрона, попутно поглощающего сходящиеся к нему со всех уголков Вселенной потоки тех же частиц, что компенсируют утечку и поддерживают равновесный размер электрона (§ 1.5). Тем самым, электрон можно уподобить бочке Данаид, также расположенной по греческой мифологии на нижнем этаже мироздания. В эту мифологическую дырявую бочку, сколько ни наливай воды, — её не заполнишь доверху. В такой бочке, с приближением к верхнему критическому уровню, интенсивность потока уходящей воды растёт под напором давления. Позитрон же, напротив, можно сравнить с другим типом бочки, в которую постоянно льются потоки дождя, и, несмотря на беспрерывное вычёрпывание воды из неё, уровень не может упасть ниже критической отметки. Ещё лучше сравнить позитрон с плавающей лодкой (бочкой), имеющей широкую пробоину, сквозь которую постоянно втекает вода, и — тем интенсивней, чем ниже уровень воды в лодке. Поэтому, сколько ни вычёрпывай воду, та не опустится ниже некого предельного уровня.

    Таким образом, несмотря на то, что антимир (сектор античастиц) — это зеркальная копия мира (сектора частиц), такое зеркальное изображение объектов мира не является их точной копией. Кроме того, что в зеркальном антимире меняются знаки зарядов, правое переворачивается на левое, а прямое движение становится попятным, несколько отличаются и размеры частиц, словно зеркало не плоское, а чуть-чуть вогнутое, отчего электрон отображается в виде увеличенного обратного изображения (позитрона), притягивающего электрон по законам электростатики [137, с. 86]. При этом, за счёт малости искажений, соблюдается точное сохранение пропорций и равенства количеств объектов и их изображений. Число электронов в точности равно числу позитронов. К вопросу о природе античастиц и антимира, о причинах асимметрии их свойств со свойствами мира частиц, ещё вернёмся в дальнейшем (§ 3.15, § 5.6).

    § 3.12 Природа ядерных сил

    Ядерные силы имеют много особенностей, но у них нет особой природы. Отнюдь. Они кулоновские силы, электростатические. И потому нет необходимости ни в теориях обменных сил, ни в аналогиях с вращением нуклонов или пионов по орбитам атомарного типа.

    (В. Мантуров, "Ядерные силы — предложение разгадки" [79])

    Притяжение нуклонов, ядер возникает, как было выяснено, за счёт их электрон-позитронной структуры (§ 3.2, § 3.9). Заряды e- и e+, расположенные, словно ионы в кристалле соли, периодично, в шахматном порядке, встают друг против друга. За счёт этого, даже нейтральные частицы такой структуры притягиваются (Рис. 125). Это подобно притяжению двух диполей: они нейтральны, но при их взаимной ориентации, возникает сила притяжения, быстро спадающая с удалением (такую электромагнитную природу ядерных сил физики предполагали уже давно [19, с. 228]). Подобный механизм ядерного взаимодействия ведёт к тому, что оно заметно лишь на дистанциях r порядка периода (шага) электрон-позитронной решётки, равного классическому радиусу электрона 10-15 м. Оттого такой радиус действия имеют и ядерные силы. Физики не обращали внимания на это совпадение, поскольку не могли его объяснить. Когда, в ходе сближения частиц, ядерная сила превысит силу кулоновского отталкивания, ядра станут притягиваться. С этого момента энергия притяжения преобразуется в энергию ядерной реакции, поскольку притяжение придаёт сходящимся ядрам скорость, кинетическую энергию, — как при аннигиляции e- и e+ (§ 1.16).

    Рис. 125. Силы притяжения частиц со структурой электрон-позитронного кристалла (ядерные силы) и аналогичное взаимодействие диполей.


    Аналогично ядерным реакциям, протекает распад-синтез элементарных частиц и выделение энергии. Деление частиц — это не обращение в новые частицы, а распад на составляющие, с сохранением их числа, — как в ядерной реакции сохраняется число протонов и нейтронов. Элементарные частицы, представляющие собой кристаллические комплексы из e- и e+, скрепляются воедино электростатическими силами притяжения, аналогичными ядерным. У ядер и частиц устойчивость, стабильность определяются формой этих кристаллов (§ 3.9). Чем более она совершенна, симметрична, ближе к правильному телу с плоскими гранями, — тем более устойчива, прочна частица. Так и в жизни: прочнее компактные вещи, близкие к кубу, лишённые выступов.

    Почему же при делении частица всегда разбивается на одни и те же частицы, — на осколки правильной формы, и распады идут известным путём? Если бить однотипные кирпичи, кубики стекла, их осколки каждый раз будут иметь разные массы и формы, притом неправильные, в то время как частицы разбиваются всегда на известные элементарные частицы, с их строго заданной формой и массой. Всё дело в изотропных (одинаковых во всех направлениях) свойствах кирпичей и стекла, отчего им энергетически безразлично, на какие части ломаться. Зато, у элементарных частиц, за счёт кристаллической структуры, прочность сильно зависит от направления деформации, отчего кристаллы при ударе разваливаются по плоскостям спайности. Вспомним, что частицы, построенные из зарядов e+ и e-, подобны кристаллам соли из ионов Na+ и Cl- (Рис. 120). Так вот, если ударить молотком по кристаллу каменной соли, он развалится на куски правильной формы — на кубики и параллелепипеды [164]. То же и при распаде частиц, делящихся на правильные фрагменты, — на другие стандартные частицы, причём с заданным соотношением их масс и форм, поскольку частица разбивается на предельно устойчивые части, ломаясь в местах наименьшей прочности. Ведь, как нашли выше, частицы, подобно зданиям, пирамидам, построены из правильных кирпичей, блоков (мезонов, § 3.8), распадаясь при ударе не на мелкую пыль и крошку, а на эти "кирпичи" и крупные блоки из них. Частица может делиться и несколькими путями. Но в этом не больше странного, чем в способности молекул химически делиться двумя-тремя способами. Вероятность данного пути распада определяется прочностью образуемых фрагментов. Чем симметричней, устойчивей возникшие частицы, то есть, чем ниже их остаточная энергия и выше энерговыделение, тем вероятней данный путь распада, что подтверждает и опыт. Потенциальная энергия системы стремится к минимуму.

    Рис. 126. Взаимодействие электрона с одномерным знакопеременным распределением заряда.


    Чтобы лучше понять природу ядерных сил и изучить их количественно, рассмотрим одномерное периодичное знакопеременное распределение зарядов. Его можно представить зависимостью плотности заряда ? от координаты x в виде

    ?=(e/r02)cos(x/r0),

    где r0 — радиус электрона, e — его заряд. Это — как бы набор чередующихся заряженных нитей с поверхностной плотностью ? (Рис. 126). Сила притяжения электрона к тонкой заряженной нити шириной dx, есть

    dF=e?dx/2??0R,

    где R — расстояние до элемента dx. Нам важна лишь поперечная к оси х составляющая силы притяжения

    dFz=dF(z/R)=e?zdx/2??0R2,

    где R2=z2+x2. Интегрируя dFz в пределах изменения x от минус до плюс бесконечности, найдём по таблице интегралов силу

    Fz= (e2/2r02?0)exp(—z/r0).

    Такова сила притяжения к системе электрона, помещённого над положительным зарядом (позитроном, Рис. 126). И с той же силой он будет отталкиваться, находясь напротив отрицательного заряда (электрона), как легко увидеть, изменив знак ?.

    Получить двумерное периодичное распределение заряда можно, сложив два одномерных ?(x)=(e/r02)cos(x/r0) и ?(y)=(e/r02)cos(y/r0), как бы переплетя две системы скрещенных заряженных нитей в полотно, ткань, сетку (Рис. 127). Тогда, сила притяжения к такой электрон-позитронной решётке, по принципу суперпозиции, есть просто сумма отдельных сил: Fz+Fz=(e2/r02?0)exp(—z/r0). Таким образом, электрон притягивается к положительным узлам этой решётки, и сила притяжения экспоненциально спадает с удалением z от плоскости кристаллической частицы. Материя тел и частиц "соткана" из положительных и отрицательных зарядов, словно простая тканая материя — из переплетённых нитей основы и утка, выходящих на поверхность в шахматном порядке, подобно электронам и позитронам, образующим своего рода шахматную доску. Электроны, как магнитные шахматные фигурки, прилипают к этой шахматной доске в точно отведённых им клетках (напротив позитронов, Рис. 101).

    Рис. 127. Сложение двух одномерных распределений заряда даёт двумерное, как в электрон-позитронной решётке.


    Так же прилипают к электрон-позитронным слоям и протоны с нейтронами. Ведь и сами они подобны кристаллам, образованным электронами и позитронами (§ 3.2, § 3.9). Протон и нейтрон стягиваются гранями так, что электроны одной частицы становятся против позитронов другой и наоборот. Тогда полная сила F притяжения частиц равна сумме сил притяжения всех электронов и позитронов: F=N(e2/r02?0)exp(—z/r0), где N — число зарядов в контактирующих гранях. То есть, сила сцепления двух протонов или нейтрона и протона спадает с удалением z по экспоненте. Именно такой закон и был открыт для ядерных сил. Причём, предложенный механизм ядерного притяжения сразу объясняет, почему ядерные силы — короткодействующие, а характерный радиус их действия совпадает с классическим радиусом электрона r0 (порядка 10–15 м), чего квантовая физика объяснить не могла. Всё дело в том, что множитель exp(—z/r0) в выражении для F, по мере удаления, быстро стремится к нулю, делая ядерную силу F заметной лишь на расстояниях z порядка r0 и, практически неощутимой, — на расстояниях бoльших 3r0.

    Выходит, ядерные силы, так же как магнитные и гравитационные, имеют электрическую природу [19, 79]. Два протона при сближении сначала отталкиваются, поскольку сила электрон-позитронного взаимодействия их граней мала. По мере сближения, эта ядерная сила быстро нарастает и, наконец, превосходит силу кулоновского отталкивания. Напомним: протон образуют примерно 900 электронов и 900 позитронов, но позитронов на один больше, чем вызван положительный заряд протонов, который и отталкивает частицы. Силы взаимодействия прочих электронов и позитронов уравновешены. Но, при сближении и взаимной ориентации протонов, за счёт их упорядоченного строения, баланс сил нарушается: возникает притяжение их кристаллических решёток, удерживающее частицы вместе. Влияние взаимной ориентации нуклонов и ядер на степень их взаимодействия, действительно, давно обнаружено [19, с. 319], но от незнания природы ядерных сил и структуры ядерных частиц, этот эффект, подобно магическим числам, не находил объяснения.

    Аналогично нуклонам, сцепляются и другие частицы, имеющие кристаллическое строение и крепящиеся друг к другу электронами, встающими напротив позитронов, как детали детского конструктора, с их крепёжными выступами и впадинами, расположенными в шахматном порядке. Интересно, что похожую механико-геометрическую теорию связи микрочастиц, сцепленных плоскими гранями тем прочней, чем больше площадь их контакта (а значит, число N образующих грани зарядов), ещё в середине XVIII века развивал М.В. Ломоносов. Впрочем, поверхности, которыми соприкасаются нуклоны, — это не всегда плоские грани, ибо они могут иметь и более сложную, уступчатую форму, с крупными выступами и впадинами, входящими друг в друга как элементы паззла. В этом случае, площадь контакта частиц и число связей N зарядов — увеличены, отчего увеличена прочность связи. Этим можно объяснить, почему некоторые сочетания нуклонов особенно прочны и стабильны (вспомним магические числа нуклонов, § 3.6), что происходит, когда при соединении они образуют наиболее правильное, законченное и симметричное тело с минимумом выступов, а, значит, — минимумом потенциальной энергии (отсюда же — симметричные плоские грани кристаллов). Так, особенно устойчиво сочетание двух протонов и двух нейтронов (альфа-частица, или ядро гелия), что легко объяснимо, если каждый их выступ прочно удерживается в ответной впадине, образуя укомплектованную частицу, подобно тому, как четыре элемента на эмблеме "Microsoft Office" составляют законченный паззл в виде ровного квадрата.

    Как видим, кристаллическая, бипирамидальная модель ядра не только наиболее проста и естественна, с точки зрения идентичности атомов, но и приводит к изящному объяснению ядерных сил и характера их изменения с расстоянием. Без упорядоченной кристаллической структуры атома и ядра невозможно понять природу оболочек, уровней и спектров. И, вполне закономерно, что известные учёные И. Курчатов и П. Кюри, заложившие фундамент ядерной физики у нас и за рубежом, пришли в эту область не из квантовой физики, а из физики кристаллов, которым посвящены их ранние исследования. Конечно, отчасти квантовая физика справедлива в том, что в микромире есть дискретность, но суть её не в дискретности энергии (кванты), а в дискретности материи, атома, ядра, построенных из упорядоченно, периодично расположенных частиц. Это — истинно атомистический подход. В физике вообще только два пути: один — атомистика, а всё прочее — мистика (§ 5.14). К мистике относится и квантовая механика, и теория относительности, наделяющая пустое пространство свойствами. Согласно же атомистике в мире нет ничего, кроме пустоты, — пустого пространства, не имеющего свойств, и движущихся частиц и тел, наполняющих эту пустоту и подчиняющихся законам механики. Этот принцип постройки справедлив на всех этажах мироздания. Любое тело — это набор частиц, любой процесс, воздействие — это движение частиц, любая энергия — это кинетическая энергия частиц. Мир устроен предельно просто и гармонично!

    § 3.13 Ядерные реакции и дефект массы

    Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной закон простирается и в самые правила движения: ибо тело, движущее своей силой другое, столько же оныя теряет, сколько сообщает другому, которое от него движение получает.

    (М.В. Ломоносов [84])

    Современные физики не считают чем-то удивительным появление и исчезновение массы в ядерных реакциях: такая возможность непосредственно следует из теории относительности. Однако, как открыл ещё Демокрит, обосновал Ломоносов, и, как было показано в § 1.16, вопреки СТО, во всех реакциях масса сохраняется. Если мы не видим, куда она уходит, или откуда берётся, это не значит, что она исчезла или возникла из пустоты, из энергии. Так, и в химии прежде верили, что масса исчезает и рождается, не замечая, как она утекает или поступает в форме невидимых газообразных продуктов. Например, при нагреве свинцового прутка, его масса — растёт. Учёные трактовали это так, будто тепло (теплород или флогистон), поступившее в свинец, преобразовалось в массу, отчего вес прутка вырос. И лишь М.В. Ломоносов доказал, что рост массы свинца вызван поглощением частиц кислорода O из воздуха [84]. Соединяясь со свинцом и образуя окалину (окисел), частицы наращивают вес прутка. Если нагреть свинец в запаянной колбе, то, хотя вес прутка и вырастет, вес колбы не изменится: поглощённый свинцом кислород поступил из воздуха, который стал легче, а общий вес прутка и воздуха в колбе останется прежним. Открытый Ломоносовым закон сохранения массы справедлив всегда и всюду. Но современные алхимики, — физики-ядерщики, забыв уроки Ломоносова, снова стали верить, что масса рождается из энергии и исчезает, обратившись в энергию (этот современный аналог теплорода, флогистона), вместо того, чтобы, припомнив уроки истории, поискать пропавшую массу в неуловимых нейтральных частицах. Ведь сами учёные — признают их реальность, но считают эти частицы невесомыми нейтрино, а не частицами с массой равной исчезнувшей (§ 3.15).

    Ломоносов своим изречением утвердил и закон сохранения энергии, указав, что энергия — это не абстрактная субстанция (типа флогистона, теплорода), а движение, которое передаётся от одних тел другим, не исчезая и не возникая. Если масса — это мера количества материи, то энергия — мера движения материи. Ломоносов первым понял, что все виды энергии сводятся к кинетической энергии частиц и интерпретировал тепловую энергию, как хаотичное движение атомов [84]. В СТО законы сохранения массы, энергии отвергаются и заменяются законом превращения массы в энергию, чем объясняют энерговыделение в ядерных реакциях. Будто, если б СТО не работала, не могли бы работать и атомные станции, бомбы.

    Это в корне неверно. Возникшая в ядерных реакциях энергия это не энергия уничтожения массы, а освобождённая внутренняя энергия связи составляющих частей ядра или элементарной частицы. Ядерные реакции подобны химическим, суть которых в соединении или распаде частиц вещества с отдачей или поглощением энергии связи в виде тепла, излучения. Исходная энергия реагентов превосходит суммарную внутреннюю энергию продуктов реакции, — эта разница в полном согласии с законом сохранения и выделяется. Рассмотрим, к примеру, откуда берётся энергия в реакции деления урана. Когда ядро урана раскалывается пополам, его положительно заряженные осколки, расталкиваемые силой Кулона, получают огромные скорости. Внутренняя энергия ядра (по сути, энергия электрического поля) преобразуется в кинетическую энергию частиц-осколков, — в тепло. Вылетающие из ядер осколки, в том числе нейтроны, ударяя в другие ядра, заставляют их делиться. Так возникает цепная ядерная реакция, отдающая энергию в виде ядерного взрыва или спокойного горения в ядерных печах-реакторах.

    К реакциям деления ядер можно отнести и ?-распад (выброс ядром ?-частицы — ядра гелия). Выясним природу энергии этих реакций на примере ?-распада урана: 234U > 230Th + 4He. Отделившееся ядро гелия He разгоняется кулоновским отталкиванием ядра тория Th (Рис. 128). Полученная He кинетическая энергия равна энергии E электрического взаимодействия ядер He и Th на расстоянии, равном радиусу R ядра Th. По мере удаления ?-частицы, эта потенциальная энергия E переходит в кинетическую — в энергию ядерной реакции. Энергия

    E=q1q2/4??0R,

    где q1=2e — заряд ядра He, q2=90e — заряд ядра Th. Отсюда

    E=45e2/??0R (Дж)=45e/??0R (эВ).

    Подставив R=10-14 м, получим E=26 МэВ. Реальная же энергия этого и других ?-распадов составляет около 5 МэВ, — в пять раз меньше, что считают доказательством неприменимости классической теории явления [135]. Но это несоответствие можно объяснить, во-первых, неточностью принятого значения R. Во-вторых, мы не учли ядерные силы, которые, притягивая и тормозя ядро гелия, снижают его энергию. В любом случае, кулоновское отталкивание вполне достаточно для придания ядрам энергии без её нелепого преобразования из массы.

    Рис. 128. Природа энергии альфа-распада: выброс альфа-частицы кулоновой силой отталкивания.


    Ядерные реакции деления сходны с химическими. Взять, к примеру, взрывчатые вещества, — нитроглицерин, гексоген, тротил. При делении их молекул выделяется много газа, — оксида азота. Его резкое расширение и создаёт эффект взрыва. Запущенная реакция идёт сама по себе: молекулы оксида азота, ударяя в другие молекулы, ведут к их распаду. То есть, и здесь идёт цепная реакция деления, в которой скрытая внутренняя энергия молекул преобразуется в энергию взрыва. Говорить о выделении энергии из массы в ядерном взрыве столь же глупо, как в обычном взрыве бомбы, выделяющей энергию и обращающейся в "ничто". И там, и там потеря массы — мнимая: масса не исчезает, а лишь уходит с невидимыми продуктами реакции. В химической реакции — это молекулы газа, а в ядерной — лёгкие, нейтральные, трудноуловимые частицы. Таковы не только реакции взрыва, но и реакции ядерного, химического горения. Химическое топливо (дрова), по мере сгорания в печи, "испаряется", переходя в газообразное состояние и оставляя лишь лёгкую золу. Так же, постепенно выгорает, теряя массу, и ядерное топливо в реакторах. В обоих случаях масса не исчезает, а уносится частицами. Нехватка, дефект масс возник лишь в головах физиков, поверивших в СТО. О растворении, испарении материи в ядерных реакциях говорили в своих работах ещё Циолковский и Тесла [110, 159], опять же, подразумевая под этим не пропажу массы, а, подобно физико-химическому растворению, — распад материи до микрочастиц. Недаром и открыты, исследованы были ядерные реакции без помощи СТО и её формулы E=mc2 [111, 139]. А первые физики-ядерщики, в том числе Э. Резерфорд и Ф. Содди, считали теорию относительности бессмысленной и ненужной в их исследованиях.

    Рассмотрим теперь реакции синтеза. В них тоже нет сверхъестественной пропажи массы и рождения из неё энергии. К таким реакциям отнесём и аннигиляцию электрона с позитроном. Те, как выяснили выше, не исчезают, а образуют частицу массы 2me. Выделяемая в виде ?-излучения энергия — это энергия электрического поля (работа кулоновской силы притяжения), освобождённая при сближения частиц (§ 1.16). Другой пример — слияние ядер дейтерия и трития, с образованием ядра гелия и нейтрона (Рис. 129). И тут энергия выделяется так же, как в реакциях химического синтеза. Скажем, при взрыве гремучего газа (смеси водорода и кислорода) атомы H и O сливаются воедино, образуя молекулу воды, с выделением внутренней энергии в виде взрыва. Аналогично и в реакции синтеза гелия в водородной бомбе выходит скрытая внутренняя энергия электрического слияния ядер водорода. При этом, реагентам необходимо прежде сообщить начальную, запальную энергию. В химии эта энергия называется "энергией активации". Такая же энергия активации есть и в реакциях ядерного синтеза: чтобы ядра водорода слились, и в игру вступили ядерные силы, ядра должны сойтись, преодолев кулоновское отталкивание. Для этого в ядерных снарядах водородное горючее "поджигается" запальным распадом плутония или урана. Подобный запал (детонатор с гремучей ртутью) есть и в обычных снарядах с химической взрывчаткой.

    Рис. 129. Слияние ядер дейтерия и трития в ядро гелия. Слиянию противостоят кулоновские силы отталкивания ядер.


    Таким образом, аналогия химических и ядерных реакций — полная. Однако, если в реакциях распада энергия выделяется в виде кинетической энергии разлетающихся осколков ядра (разогнанных полем кулоновского отталкивания), а в реакциях аннигиляции — в виде энергии ?-излучения (преобразованной энергии электрического притяжения e- и e+), то откуда же берётся энергия в реакциях синтеза? Ведь ядра заряжены положительно и отталкиваются: их сближение требует затрат энергии. Не зря, реакции синтеза идут не спонтанно, а — лишь при нагреве до высоких температур, дабы ядра, обладая достаточной кинетической энергией, могли сойтись. Лишь на расстояниях, порядка 10-15 м, в игру вступают ядерные, притягивающие силы, превышающие силы кулоновского отталкивания. Эти быстро спадающие с удалением силы — тоже электрической природы (§ 3.12). Поэтому, выделяемая при сближении в поле этих сил энергия — это тоже энергия электрического поля, а, в конечном счёте, кинетическая энергия реонов, — частиц-переносчиков электрического воздействия (§ 1.14).

    Видим, что механизм выделения энергии в ядерных реакциях не имеет отношения к СТО и потере массы. Энергия и масса — разные понятия. Как открыл Ломоносов, отдельно сохраняется масса, отдельно энергия, они не исчезают и не возникают, а лишь передаются, соответственно, — в виде частиц и их движения от одних тел другим. Почему же тогда работает формула СТО, и потеря массы m в ядерной реакции приводит к выделению энергии E=mc2? Мы видели, что "потеря" массы, как в химической реакции, связана с уходом трудноуловимых, незаметных частиц. Так, в реакции синтеза ядра, набрав большие энергии в ходе сближения, соударяются неупруго: вся их энергия идёт на выбивание из ядра мелких осколков. Эти осколки-частицы и уносят избыточную энергию ядра, которую передают окружающим телам в форме тепла. Если же соударение упругое, то образованное ядро переходит в возбуждённое состояние. Тогда его части колеблются: после удара ядра отскакивают, затем снова сходятся и т. д., пока не истратят всю энергию на излучение, сопровождающее любые колебания зарядов. Это даёт ещё один механизм генерации ?-излучения возбуждённых ядер (§ 3.7).

    Итак, "потеря" массы связана с уходом нейтральных частиц. Чем больше энергия E соударения ядер, тем больший кусок они друг из друга выбьют. То есть, чем выше энерговыделение E реакции, тем больше теряемая ядрами масса m. Это подобно высеканию искры двумя кремнями: чем с большей силой и скоростью их сшибаешь, тем больше вылетает осколков-искр и тем они ярче, горячей, энергичней. Поскольку скорость V лёгких трудноуловимых частиц, вылетающих из ядер, обычно близка к скорости света c, то их кинетическая энергия E=mV2/2 — порядка mc2. Отсюда — соответствие между теряемой массой m и выделяемой энергией E=mc2, хотя и не вполне строгое. Но, ведь, и в опыте физики обычно не могут точно измерить энергию одной ядерной реакции, имея дело с ансамблями частиц, число которых не известно, да и энергия не всегда точно измерима. Итак, в рамках классической физики тоже есть соответствие между выделяемой энергией E и теряемой массой m в виде соотношения E=mc2, но смысл его — иной, чем в СТО, и оно отнюдь не такое строгое.

    В реакциях распада выделение энергии тоже сопровождается потерей массы. Ведь, при делении ядра кроме двух дочерних ядер должны вылетать и совсем мелкие осколки. Аналогично, если разбить кирпич ударом на половинки, то, кроме них, останутся и мелкие крошки, осколки. Так же и при отрыве капель жидкости, — кроме основной капли, в перетяжке всегда отделяется и крошечный шарик Плато (Рис. 130). Поэтому, если уж следовать капельной модели ядра, физикам следовало принять, что такая же мелкая капля-частица образуется при делении ядер. Эта частица и уносит "пропавшую" массу. В случае деления тяжёлых ядер, эта частица — нейтрон (если его реальная масса чуть выше принятой, это и породит иллюзию исчезновения массы в реакции, § 3.15). В случае ?-распада таких частиц вообще не обнаружили, хотя по капельной модели ядра они тоже должны бы быть. Понятно, почему и здесь масса m теряемой частицы соотносится с энергией распада: чем больше энергия деления E, чем мощней удар, сотрясающий и разрушающий частицу, тем массивней вылетающие осколки.

    Рис. 130. Деление капель (или ядер) с образованием шарика Плато (частицы) из перетяжки [135].


    Впрочем, всё это относилось к реакциям, а ядра обладают определённой массой, не зависящей от того, каким путём, — делением или синтезом, — они получены. Теряемый в реакциях вес (дефект массы) — это лишь разница масс исходных и конечных ядер. Значит, что-то задаёт устойчивую массу ядра, а, при делении или синтезе, ядро лишь сбрасывает лишнюю массу-балласт в виде частиц. Что же это за частицы? Вероятно, это упомянутые ранее гаммоны (§ 3.8). Ведь типичный дефект масс составляет около 0,04 масс протона (или кратную величину), то есть порядка 70me, а это близко к массе гаммона в 66me, так же бесследно исчезающей в реакциях с элементарными частицами. Почему же теряется всегда одна и та же масса, а ядра имеют стандартный вес? Ответ прост: каждое ядро состоит из определённого числа стандартных частиц, имеющих постоянную массу. И, точно, любое ядро состоит из нейтронов и протонов, однако сумма их масс никогда не равна массе образуемого ими ядра, — эту разницу и назвали "дефектом массы". По закону сохранения массы, этого не может быть, — частицы после слияния должны вместе весить столько же, сколько и до. Значит, в ядре есть и другие частицы. Действительно, мы выяснили, что ядро — это не одни голые протоны и нейтроны: в ядре эти частицы уложены, как в кульке, в бипирамидальном остове, каркасе (§ 3.3), вероятно, тоже имеющем стандартный вес, который надо учитывать. Иными словами масса ядра — это вес брутто (товар с упаковкой), а сумма масс протонов и нейтронов — это вес нетто (чистый вес, без тары).

    Рис. 131. Масса m ядра складывается из масс нейтронов n, остова o, протонов p, уложенных в остове, словно семечки, горошины в кульке.


    В таком случае, масса ядра m=nN+o+pZ, где n — масса нейтрона, N — число нейтронов, o — масса остова (упаковки), p — масса протона, Z — число протонов (Рис. 131). Тогда масса ядра водорода H=o+p, дейтерия D=n+o+p, гелия He=2n+o+2p. Поэтому, сумма масс двух ядер дейтерия D, каждое из протона и нейтрона, — не равна массе ядра гелия He. Оно чуть легче: при соединении двух ядер D один остов оказывается лишним, D+D=2n+2o+2p=He+o. Избыточный остов отделяется и улетает при слиянии ядер, унося массу и, — отдавая при соударениях энергию синтеза в виде тепла. Учёные же приписали этот дефект массы — переходу её в энергию, поскольку пренебрегли массой остова o, приравняв вес кулька, тары, — к нулю. Тем же вызван дефект массы у других ядер. Построенная Таблица 6 показывает, что дефект почти исчезает, если каждое ядро, кроме протонов и нейтронов, содержит ещё остов. Найденные по методу наименьших квадратов массы n, o, p, соответствуют не только массе ядер, но и найденной Чедвиком разнице масс нейтрона и протона (порядка массы гаммона), близкой к массе остова в 0,016·1822=30 me [55]. Как видим, вес голого протона p=0,992 отличается от обычно измеряемой в опытах массы ядра водорода H=o+p=1,008, поскольку в ядре протон окружён ещё остовом o=0,016. Если в ходе распада ядро лишается остова, оно его вскоре восстанавливает, поскольку в вакууме всегда носится множество мелких нейтральных частиц (октонов, гаммонов и т. п.).

    Оставшиеся малые расхождения, скажем у инертных газов, можно устранить, учтя кроме массы остова (тары) ещё и массу перегородок (упаковочного материала), словно слои пенопласта и картона, отделяющих нуклонные слои, по гипотезе Ридберга. Именно Ридберг, ставший предтечей Ритца в открытии спектральных формул атомов, предположил, что массу ядра образуют не только протоны, но и окружающие их лёгкие оболочки с весом, равным дефекту масс и находящимся в периодической зависимости от номера элемента. Ту же точку зрения развивал и Ван-ден-Брук (см. его биографию, написанную Ю.И. Лисневским, М.: Наука, 1981), впервые открывший связь номера элемента с зарядом ядра, числом протонов и допускавший существования частиц с массой, много меньшей ядра водорода, дающих при соединении с ядрами малые отклонения атомных весов от целых чисел. Эта концепция оболочек (§ 3.6) — естественно следует не только из закона сохранения массы, но также из аналогии ядерных и химических свойств. Подобно тому, как в химии давно известны комплексные и кластерные соединения, в которых центральные группы атомов окружены молекулярными оболочками стандартных масс и правильных геометрических форм-многогранников, так же и ядра, нуклоны заключены в оболочки-капсулы из стандартных частиц.

    Итак, по открытому Ломоносовым закону сохранения, масса ядра (частицы) всегда равна сумме масс компонентов. Любые расхождения, особенно большие, означают, что чего-то не учли, — каких-то летучих нейтральных частиц, реальность которых вытекает из закона сохранения массы. Масса не исчезает и не возникает из энергии. Так, при рождении электрон-позитронных пар частицы, как показали опыты, не рождаются из вакуума, а выбиваются из ядер ?-лучами. Другой пример: рождение частиц в столкновениях, скажем при соударении протонов в большом адронном коллайдере. Масса m возникших частиц соотносится с энергией столкнувшихся протонов как E=mc2. Но это не значит, что частицы родились из энергии. Протоны, разогнанные в ускорителе до огромных скоростей, при столкновениях могут разбивать другие частицы, вырывая крупные осколки, порой тяжелее самих протонов. Ускорители подобны тяжёлой артиллерии, стреляющей снарядами-протонами по зданиям-частицам, как из кирпичиков сложенных из электронов и позитронов (§ 3.9). Чем выше энергия протона, тем больший кусок от здания другой частицы он отколет. Если все частицы состоят из связанных в кристаллы электронов и позитронов, то более энергичные протоны способны разорвать больше таких связей. Потому и масса отколотой частицы будет пропорционально больше. Поскольку энергия связи одного электрона и позитрона E1=2mec2 (§ 1.16), то частица из N электронов потребует для своего отрыва энергии E=2Nmec2, но 2Nme — это как раз масса m образующейся частицы, равная сумме масс составляющих её электронов и позитронов. Потому масса образованной частицы и пропорциональна приложенной энергии E=mc2.

    Два сталкивающихся протона играют роль молота и наковальни. Возможно, между ними оказывается не одна крупная частица (ядро), а много мелких, типа гаммонов, собранных протонами по пути при движении в кольце ускорителя. При соударении все эти частицы сковываются воедино, как металлические заготовки на наковальне кузнеца. Чем выше энергия протонов, тем больше частиц они смогут склепать, припечатать, тем массивней возникшая частица. Итак, рождённые в столкновениях частицы это не преображённая энергия, а лишь продукт синтеза или распада от ударов.

    Впрочем, измеряемая масса частицы может, всё же, немного отличаться от суммарной массы её компонентов, как за счёт изменения электромагнитной массы от сближения зарядов (§ 1.17, § 3.18), так и за счёт погрешности "электромагнитных весов", показывающих разный вес частиц, в зависимости от того, движутся они или покоятся (§ 1.15). Так, и некоторые торговцы, дабы обвесить, не кладут, а бросают товар на чашу весов, отчего он весит больше неподвижного. Соответственно, частицы, входящие в состав более сложных частиц-конгломератов и, возможно, участвующие в них в сложном колебательном движении, могут весить чуть меньше, чем в свободном состоянии. Именно весить! Ведь находят их кажущийся, измеряемый неидеальными приборами вес, а не реальную массу, которая должна оставаться неизменной, будучи характеристикой неизменного количества материи. Так и рождается мнимое несоответствие масс частицы и её составляющих, именуемое дефектом масс, хотя правильней его было бы назвать "дефектом весов". Такую природу дефекта масс предполагали ещё Лоренц и Резерфорд, а также Дж. Фокс [2], причём они тоже получили соответствие между исчезнувшим весом и выделяемой энергией E=mc2 с позиций классической электродинамики, что вполне естественно, раз ядерные силы и ядерная энергия — электромагнитной природы (§ 3.12). Однако, нынешние физики считают, что "исчезнувшая" масса реально превращается в энергию и что её выделение в ядерных печах и бомбах доказывает справедливость теории относительности, словно ей они обязаны своим существованием.

    Но, с тем же успехом, как видели, можно заявить, что и химические реакции деления, слияния молекул, простые печи и бомбы чем-то обязаны теории относительности. Реально в любых реакциях выделяется лишь внутренняя энергия движения и взаимодействия частей в атомах и элементарных частицах. Ядерные реакции были открыты и исследованы без помощи СТО [139]. А "пропажа" в реакциях крупных масс связана с присутствием ещё не найденных нейтральных частиц или частиц с антимассой. Пусть классический подход и ведёт к отклонению некоторых формальных законов превращения частиц, зато вернётся отвергнутый физиками закон сохранения массы, имеющий для науки фундаментальный смысл.

    § 3.14 Гипотеза индуцированных распадов ядер и частиц

    Радиоактивный распад вызывается не разрушением ядра атома, а скорее является вторичным эффектом воздействия внешнего излучения, которые можно разделить на два типа: энергию сохранённую и энергию, поступающую извне.

    (Никола Тесла [110])

    В свете предыдущего анализа ядерных реакций остался последний вопрос: а что же вызывает распад и синтез частиц? Синтез ядер, как известно, идёт лишь в недрах звёзд за счёт их гигантской температуры. Зато, распад, как будто, протекает сам собой, причём весьма странно: частица, ядро распадаются внезапно, — в случайный момент времени, известна лишь вероятность распада. С точки зрения детерминизма и классической физики, это невозможно. Из аналогии химических и ядерных реакций, раз реакция распада взрывчатого вещества не может начаться без толчка, запала, то и распад ядер не самопроизволен. Когда одного физика, объяснявшего принцип работы ядерной бомбы, спросили, что же вызывает распад первого ядра, запускающего цепную ядерную реакцию, он ответил, что это — великая загадка природы. Действительно, рассмотрим ?-распад, — вылет из атомного ядра положительно заряженной ?-частицы. Конечно, ?-частица ускоряется силой кулоновского отталкивания ядра, выделяя энергию реакции Er, но для того, чтобы это произошло, нужно прежде инициировать реакцию распада: разорвать ядерные связи между ?-частицей и ядром. То есть, надо сообщить ядру энергию активации Ea, аналогичную энергии активации химических реакций и реакций ядерного синтеза (Рис. 132). Самопроизвольно реакции ядерного распада идти не могут. Однако же, — идут! Квантовая механика, с подачи Г. Гамова, объясняет это туннельным эффектом.

    Рис. 132. Зависимость потенциальной энергии U взаимодействия ядер от расстояния r между ними.


    За счёт неопределённости положения, ?-частица может ненадолго выйти за потенциальный барьер (туннелирует сквозь него). Тогда, силы кулоновского отталкивания смогут одолеть ядерные, и частица станет всё быстрей удаляться от ядра. Но в классической физике, где царит детерминизм, это невозможно. А, потому, должен быть внешний источник, сообщающий частицам энергию активации. И такой источник есть — это космические лучи, то есть, — приходящее из космоса электромагнитное и корпускулярное излучение, имеющее и мощную проникающую компоненту, для которой земные преграды — не помеха. Это излучение, судя по всему, и вызывает распад радиоактивных веществ и создаётся сверхэнергичными нейтральными частицами, поток которых постоянен и весьма однороден по направлениям. Поэтому, независимо от времени суток, температуры и других условий, от того, лежит ли распадающийся изотоп в свинцовом контейнере или на воздухе, распад всегда идёт с постоянной скоростью. Частота распадов определяется вероятностью попадания в ядро частицы достаточной энергии, — энергии активации. Удар частицы ведёт к возбуждению ядра и его делению, если эта энергия достаточна для разрыва ядерных связей. Чем прочнее частица или ядро, тем реже такое будет происходить, — тем больше время жизни частицы и период полураспада изотопа. Наиболее прочные ядра, обладающие большой энергией активации (меньше энергии налетающих частиц), — стабильны.

    Нейтральные частицы, идущие из космоса, имеют, в отличие от сверхэнергичных заряженных (§ 5.10), естественное происхождение, рождаясь, вероятно, в недрах звёзд, — этих природных ядерных реакторах. То, что ядерный распад — это процесс не спонтанный, а индуцированный, заданный внешними факторами, доказывают опыты С. Шноля [167]. Впрочем, вполне возможно, что частицы, возбуждающие ядра, — это просто реоны и ареоны, ударяющие в заряды e+ и e- ядер и, как раз, обладающие огромной проникающей способностью с высоким постоянством потока (§ 1.5). К тому же, и сам электрон испускает реоны и дёргается, дрожит за счёт отдачи при выстрелах реонами и от ударов других реонов. То есть, подобно тепловым колебаниям атомов в кристаллах, колеблются e+ и e- в решётке ядер. Когда размах этих колебаний случайно превысит ширину потенциального барьера, ядра делятся. Совсем как тепловое движение атомов вызывает порой их распад, — отрыв электрона (ионизацию), так и тепловые колебания электронов в ядре могут приводить к распаду ядер, — отделению их фрагментов. Таким образом, удары реонов, выброшенных одними электронами к другим (Рис. 7), служат своего рода запальной искрой, провоцирующей взрыв ядра, будто пушечных разрывных ядер с фитилём. Удары реонов, сотрясая ядро, то и дело выводят его из равновесия, рано или поздно приводя к взрыву ядра, так же, как от случайных мелких ударов и искр, порой, "самопроизвольно" детонируют взрыватели бомб и ампулы с нитроглицерином.

    Подобное сотрясение, тепловое дрожание частиц, — аналогично квантовой неопределённости их положения, но имеет классическую природу. Интересно, что такие колебания элементарных частиц, напоминающие случайное метание пылинок в луче света, описывал ещё Демокрит, предвосхитивший открытие броуновского движения (§ 4.16). Причём, Демокрит отмечал, что такое движение может возникать не только за счёт внешних ударов других частиц, атомов, но и под действием внутренних причин, под которыми ныне можно понимать испускание электронами реонов [31]. Позднее такие тепловые колебания атомов, ядер и электронов — под действием ударов микрочастиц, снующих со скоростью света, приводились Максвеллом и Пуанкаре в качестве аргумента против теорий Лесажа и Ритца [107]. Но, как выяснилось, если размер реонов достаточно мал, эти колебания будут незначительны, за счёт усреднения. К тому же электрон, под ударами реонов, не наращивает свои "тепловые" колебания бесконечно, поскольку не только поглощает вместе с реонами их энергию, но и столько же отдаёт, когда испускает их обратно (§ 1.5). Однако "тепловые" колебания электронов, предсказанные БТР, вполне достаточны для объяснения естественной ширины спектральных линий, эффектов туннелирования и ядерных распадов, через классическое объяснение принципа неопределённости (§ 4.13).

    Выходит, "неопределённость", "случайность", "спонтанность" ядерных распадов — лишь кажущаяся, и носит классический вероятностный характер, а потому распады строго детерминированы и предопределены. Примерно так же, если выстроить много однотипных карточных домиков-пирамид на полу, то с течением времени они будут, один за другим, разваливаться, — казалось бы, спонтанно, в случайный момент времени, по тому же экспоненциальному закону, что и ядра. Однако, каждый такой распад домика (так же как распад ядра), связан с внешними воздействиями (вибрациями пола или дуновениями ветра), носящими случайный характер и, в момент сильных флуктуаций (превышающих прочность карточного домика или ядра), — разрушающими его. Более прочные типы домиков имеют большее время жизни и период "полураспада", и в спокойной обстановке могут простоять годами, но всё равно в итоге рухнут от редких, но сильных флуктуаций, скажем, — от землетрясений, ураганов. То же самое и с атомными ядрами, подверженными "случайным" ударам судьбы.

    Удары частиц могут и не сообщать энергию активации, их смысл в выводе ядер из равновесия, разрыв же производят кулоновские силы отталкивания. Ведь ядерные силы, удерживающие ядра от разрыва, сильно зависят от упорядоченного расположения электронов и позитронов. Их колебания, смещения под ударами частиц снижают эти силы, делая временно меньше кулоновских. Дрожание электронов в узлах решётки ведёт к делению не прямым, а окольным путём, — более длинным, но с меньшим усилием. Связи e+ иe- в электрон-позитронном кристалле рвутся постепенно, по одной, и для разрыва хватает меньшей силы. Так, и усилие на сдвиг или разрыв реального кристалла — меньше расчётного, поскольку от искажений, дислокаций связи рвутся поочерёдно [164]. Аналогично, прочная кирпичная стена может быть разрушена небольшим, но длительным усилием, если расшатывать и извлекать кирпичи по одному. Вот и дрожание кирпичиков-электронов, хоть и не снижает работы Eк кулоновской силы по отрыву ядер, но позволяет местами электрическому отталкиванию превысить притяжение, снижая высоту барьера. Разрушение ядра идёт и не в гору, и не сквозь барьер (туннельный эффект), а — в обход, через перевал (Рис. 132).

    Итак, распад не бывает спонтанным, но всегда связан с испусканием-поглощением реонов или других частиц, — с электромагнитным и корпускулярным излучением. Подобную гипотезу о запуске ядерных реакций внешним источником, выводящим систему из равновесия, выдвигали многие учёные. Так, признанный специалист по ядерной физике, Ф. Содди, отмечал, что, согласно Кельвину, ядерные реакции не могут протекать самостоятельно, но вызваны внешним воздействием, служащим запальной искрой [139]. Так же и Тесла, как видим из эпиграфа, считал радиоактивный распад не спонтанным процессом, а индуцированным за счёт космического излучения [110]. Именно внешнее излучение вызывает, по гипотезе Тесла, ядерный распад, сообщая энергию активации, и уже в запущенном процессе выделяется дополнительно внутренняя энергия, запасённая в частицах и ядре. Так же и в жизни, в химических реакциях, для того, чтобы камень скатился с горы, а дрова — загорелись, выделяя запасённую в них энергию, им надо сообщить начальную энергию активации: подтолкнуть или поджечь спичкой.

    § 3.15 Загадка нейтрино и слабого взаимодействия

    Свойства нейтрино, рассмотренные на основе эмиссионной теории должны отличаться от наших нынешних о них представлениях. К примеру, Ритц предлагал возможные качественные объяснения непрерывного спектра ?-распада [9, с. 418]. Основная идея состояла в том, что, если электрон обладает осью симметрии, то электромагнитная сила, выбившая его из ядра, должна по его теории меняться в зависимости от ориентации электрона. Иными словами, энергия электрона изменялась бы в зависимости от его поляризации. (Этот факт был недавно обнаружен.) Понятно, что при таком взгляде на вещи "нейтрино Ритца" могло бы отличаться от того, которое известно нам. Следовательно, наше истолкование экспериментов по распаду мезонов могло бы быть иным.

    (Дж. Г. Фокс, "Свидетельства против эмиссионных теорий" [2])

    В настоящее время многие подвергают сомнению реальность открытого Вольфгангом Паули нейтрино, — всепроницающей и летящей со световой скоростью нейтральной частицы, имеющей массу много меньше массы электрона. Слишком уж странно выглядит эта гипотетическая частица, неуловимая, словно кварки, которых никто не наблюдал. И, в точности как для кварков, было придумано несколько сортов нейтрино, когда стало ясно, что одним обойтись не удастся.

    Рассмотрим, что привело учёных к гипотезе нейтрино, для чего изучим строение и распад нейтрона. Ведь поводом к открытию нейтрино послужили именно реакции распада нейтрона и ?-распада ядер, где один нейтрон, испуская электрон, превращался в протон. Из этого распада следует, что нейтрон n состоит из протона p и электрона e (Рис. 133), равно как распад молекулы воды на водород и кислород при электролизе означает, что вода состоит из этих элементов. Однако, учёные отрицают, что в нейтронах есть протоны или электроны, упирая на то, что магнитный момент электрона много больше, чем у нейтрона и протона: сумма моментов e и p не даёт момент нейтрона. Но, в действительности, если протон (и нейтрон) состоит из многих электронов и позитронов (§ 3.9), их магнитные моменты вполне могут гасить друг друга, почти обнуляя момент протона. Совсем как заряды e+ и e- нейтрализуются при слиянии, так же почти исчезают их магнитные моменты, направленные противоположно. Электрон вполне может быть частью нейтрона, если и протон — составная частица из сотен e+ и e- (Рис. 120, Рис. 121, Рис. 123).

    Рис. 133. Деление нейтрона n на протон p, электрон e и остаточную частицу o, которую считали нейтрино.


    Надо также учесть, что при распаде нейтрона, кроме протона и электрона, возникает ещё одна частица со своим магнитным моментом. Это следует из того, что энергия электрона в ?-распаде принимает разные значения, хотя, по закону сохранения импульса, энергия распада должна делиться между протоном и электроном в постоянной пропорции [135]. Поэтому, Паули предположил образование неизвестной нейтральной трудноуловимой частицы, уносящей часть энергии. Полагали, что это нейтрино — нейтральная частица с массой, много меньшей массы электрона. Но, если нейтрон сложен из элементарных кирпичиков e+ и e-, то осколки, на которые он делится, должны состоять из тех же кирпичиков и иметь массу M ? me. Таковы электрон и протон, такова, значит, и вылетающая из нейтрона частица. Выходит, это не нейтрино, а, вероятно, другая, часто возникающая в распадах нейтральная и трудноуловимая частица — гамма-мезон, или гаммон Г, имеющий нулевой заряд и массу в 66 электронных.

    Рис. 134. Строение пи-мезона и его распад с указанием масс частиц.


    И, точно, как видели (§ 3.9), в реакциях, где, как полагали физики, возникало нейтрино, — при распаде пиона на мюон или мюона на электрон, рождались гаммоны (Рис. 134, Рис. 135). Именно невидимые, трудноуловимые нейтральные гаммоны скрыто уносили в этих реакциях массу, кратную 66me. Но у нейтрона масса почти равна массе протона: их разница составляет не 66me, а лишь 2,5me. Впрочем, возможно, что массу нейтрона нашли неверно. Ведь нейтральные частицы не взвесишь электромагнитными весами, — их массы находят косвенно, из баланса энергий в распадах. При этом, пользуются ложными формулами специальной теории относительности (СТО). Получается порочный круг: формулы СТО дают ошибочную массу нейтрона, которая даёт дефект массы, что снова подтверждает СТО. А, ведь, прежде, когда массу нейтрона рассчитали, непосредственно измеряя скорости ядер после соударений с нейтронами, найденная масса оказалась равна 1,15 масс протона, с максимальной ошибкой в 10 % [55, 135]. То есть, даже в пределах ошибки, прямой метод не дал согласия с массой нейтрона, найденной из СТО. Объяснить это расхождение не смогли, хотя его причина очевидна: теория относительности ошибочна, как и найденная из неё масса нейтрона.

    Рис. 135. Строение мю-мезона и его распад с указанием масс частиц.


    Если масса нейтрона составляет около 1,15 масс протона, то нейтрон тяжелей на 0,15·1836=275me. Но это — масса ?0-мезона, эквивалентного четырём гаммонам. Итак, во всех распадах, где предполагали рождение безмассовых нейтрино, на деле возникают гаммоны с массой 66me. Они и уносят недостающую массу (Таблица 7). Было придумано целых три сорта нейтрино: электронное ?e, мюонное ?? и таонное ?? [135]. Уже то, что под каждую реакцию выдумывали новый сорт нейтрино, доказывает их искусственность, нереальность. Проще вместо трёх разных, допустить одну частицу, — гаммон. В реакциях с мюоном ? возникает один гаммон, с электроном e — три-четыре Г, а с таоном ? — десятки. Потому, и опыты дали для масс "нейтрино" m(??)<m(?e)<m(??) [135]. Гипотеза гаммонов объясняет и это, и "взаимопревращения" нейтрино.

    Вывод о реальности гамма-мезонов (нейтральных частиц с массой в 66me) в классике следует из реакции распада ?-мезона. В камере Вильсона видно, как при распаде пиона из него вылетает мюон ?- с массой, на 66 единиц меньшей (Рис. 134). Он летит в ином направлении, чем ?- (треки частиц расходятся под углом). Значит, по закону сохранения импульса возникает ещё одна частица. Физики сочли, что это — нейтрино с почти нулевой массой. Но, из классического закона сохранения массы, — раз в реакции исчезает масса в 66me, то её должна уносить частица такой массы. То есть, образуется не призрачное нейтрино, а весомый гамма-мезон. Аналогично, при распаде ?-мезона видно, как вылетевший электрон меняет курс, значит, и здесь есть скрытая частица (Рис. 135). Раз масса электрона на 206 единиц меньше массы мюона, то невидимая частица — не пустое нейтрино, а тяжёлый конгломерат из трёх гаммонов и октона O, имеющих в сумме такой вес (§ 3.9). Полная пропажа массы при распаде пиона ?0 — тоже иллюзия: пион просто делится на 4 гаммона. Соударяясь с ядрами, гаммоны переводят их в возбуждённое состояние, и те испускают ?-излучение, наблюдаемое в распадах ?0. Нет пропажи массы и при аннигиляции, — слиянии электрона и позитрона: образуется лишь нейтральная частица (§ 1.16).

    Если нейтрино Паули — это фикция, то что же, в таком случае, представляет собой обнаруженное в опытах нейтринное излучение, приходящее из космоса и ядерных реакторов? Чем вызывается распад нейтрона и какова природа слабого взаимодействия, вызывающего этот распад? Ответим на всё по порядку. Прежде всего, по поводу нейтринного излучения. Мы выяснили, что в ?-распаде образуются не невесомые нейтрино, а вполне материальные нейтральные частицы. Нейтрино же, по своим свойствам (огромной проникающей способности, массе много меньшей массы электрона и световой скорости распространения), более всего напоминает реоны. Они так же имеют ничтожную массу, в сравнении с электроном, выбрасываются им всегда со скоростью света и, при этом, легко проникают даже сквозь самые толстые слои вещества, неся к ним электрическое, магнитное и гравитационное воздействие. Интересно, что ещё на основании расчётов Менделеева, предложенных им в рамках молекулярно-кинетической теории для описания частиц-переносчиков света и электрического воздействия, некоторые физики пришли к выводу об эквивалентности этих частиц (реонов) и нейтрино [99].

    Нейтрино очень слабо взаимодействует с веществом, потому и взаимодействие, вызывающее распад нейтрона, называют "слабым". Но сходство свойств нейтрино и реонов, или, даже, — их тождественность, наводят на мысль о том, что нейтринное излучение — это тоже электромагнитное излучение, переносимое всё теми же частицами-реонами. Именно поэтому, скорость нейтринного излучения равна световой. В частности, это было обнаружено в оптических вспышках сверхновых, которые сопровождаются одновременными вспышками нейтринного излучения, зарегистрированного нейтринными телескопами, что говорит о том, что излучения дошли до Земли за одно и то же время, двигаясь с примерно одинаковой скоростью. Судя по всему, механизм генерации нейтринного излучения в распаде нейтрона во многом аналогичен механизму ?-излучения при распаде ядер. Однако, частота нейтринного излучения — на много порядков выше. Поэтому, если даже ?-излучение обладает очень высокой проникающей способностью, проходя сквозь толстые листы свинца, то нейтринное излучение имеет ещё на порядки большую проникающую способность.

    Интересно, что ещё Виктор Франц Гесс, открыв космические лучи, предполагал, что в нём содержится и некое ультра-гамма-излучение, тем самым предвосхитив открытие космического нейтринного излучения [163]. Однако, эту и другие гипотезы Гесса забыли, как и его самого, а слава исследователей космических лучей досталась учёным-кванторелятивистам, не имевшим к открытию космолучей никакого отношения. Справедливости ради, стоит отметить, что нейтринное излучение первоначально как раз и посчитали электромагнитным излучением, полагая, что именно оно уносит часть энергии в ?-распаде [135]. Но потом, под влиянием Паули и других физиков, эту гипотезу отвергли. Однако, в итоге физики, всё же, вернулись к ней (сама физика их заставила) и создали теорию электрослабого взаимодействия, объединяющего электромагнитное и слабое — в одно. Это было, по сути, и возвратом к гипотезе индуцированных нейтринным излучением распадов нейтронов (§ 3.14). Что же за силы вызывают распад нейтрона и некоторых других частиц? Эти силы называют "силами слабого взаимодействия", но природы их никто не знает.

    Выше было показано, что магнитные, индукционные и гравитационные силы — это лишь частные проявления электрических. Так же, и ядерные силы, как нашли, имеют электрическую природу, будучи вызваны взаимодействием электронов и позитронов в ядрах. Кроме электромагнитного, гравитационного и сильного (ядерного) взаимодействий известно последнее, — слабое, ответственное за распад нейтрона и других частиц [45]. Судя по всему, эти распады тоже вызваны электрическими силами. Во-первых, электроны и позитроны, испытывая удары реонов и ареонов и отдачу, при их испускании, дёргаются, наподобие броуновских частиц (§ 3.14). Временами, силы ударов отдельных реонов, складываясь, могут превысить средние силы притяжения электронов к позитронам и вызвать распад частиц. Во-вторых, существует очень слабая сила W отталкивания электронов нейтральными частицами (Рис. 123, § 3.11). Видимо, это слабое отталкивание и ответственно за слабое взаимодействие, приводящее к распаду нейтронов, с образованием электронов и протонов. Оттого в нашем мире так много протонов и электронов, тогда как антипротоны и позитроны — крайне редки. В полном соответствии с опытами, сила W=2F?/r слабого взаимодействия по интенсивности — будет средней между электрическими силами F и гравитационными G=4F?2/r2.

    § 3.16 Единая теория взаимодействий, или Великое объединение

    Природа проста и не роскошествует излишними причинами.

    (М.В. Ломоносов [84])

    Как видели выше, баллистическая теория Ритца оказывается наиболее универсальной и общей из всех физических концепций, поскольку позволяет свести все виды взаимодействий — электромагнитное, гравитационное, слабое и сильное (ядерное) — к одному, а именно к электрическому. То есть именно теория Ритца приводит к единой теории взаимодействий и Великому Объединению, которое давно стремились осуществить физики, но до сих пор — не смогли. Так, Эйнштейн безрезультатно бился над созданием единой теории поля последние 30 лет жизни. Все попытки достичь такого объединения носили искусственный, умозрительный характер и осуществлялись путём введения массы абстрактных, ничем не подкреплённых, измышлений и гипотез. Вот почему они не имели успеха. Это относится и к максвелловой теории электромагнитного взаимодействия, искусственно объединившей электричество и магнетизм. Относится это и к квантовой теории электрослабого взаимодействия, в которой Ш. Глэшоу и С. Вайнберг пытались свести электрические и слабые взаимодействия — к одному общему.

    А в теории Ритца такое объединение достигается сразу по всем видам взаимодействий и возникает оно не в форме дополнительных сложных гипотез, а — как естественное следствие единственной исходной гипотезы Ритца о механизме электрического взаимодействия зарядов, посредством реонов (§ 1.4). Ранее было показано, как из этой модели получаются магнитные (§ 1.7), индукционные (§ 1.8) и гравитационные силы (§ 1.17). Также продемонстрировано, как из построенной Мантуровым модели строения частиц и электрических сил получаются ядерные силы (§ 3.12). Наконец, сведено к электрическому и последнее, — слабое взаимодействие (§ 3.15), возникающее в качестве простого следствия ритцевой модели взаимодействия электронов. В свою очередь, электрическое взаимодействие элементарных зарядов сводится моделью Ритца к чисто механическому. Тем самым, все виды энергий сведены к механической энергии — к кинетической энергии движущихся частиц материи. Выходит, именно универсальная кинетическая электродинамика Ритца осуществляет синтез всех взаимодействий, сводит их к одному, электрическому.

    Итак, из гипотезы Ритца о строении и распаде электрона — естественно следуют четыре типа взаимодействий и соотношения между ними. В свою очередь, эти соотношения автоматически задают масштабы размеров частиц, энергий их распада-синтеза и спектры излучения.

    Так, соотношение магнитного и электрического взаимодействий задаёт размеры атомов и молекул: отталкиваемые кулоновой силой электроны удерживаются рядом на равновесном расстоянии, за счёт взаимодействия их магнитных моментов и притяжения ядра.

    Соотношение электрического взаимодействия и сильного ядерного задаёт характерный размер ядер, в том числе, — их предельный размер и массу.

    А соотношение электрического взаимодействия и слабого ядерного ограничивает размер элементарных частиц, — комплексов из электронов и позитронов.

    Наконец, можно предположить, что соотношение электрического взаимодействия и гравитационного задаёт характерные размеры планет и звёзд.

    В дальнейшем могут открыться более тонкие проявления электрического и гравитационного взаимодействий, вызванные движением частиц и тел. Такого рода взаимодействия будут задавать уже размеры и энергетику субэлектронных частиц и звёздных скоплений, галактик. Тем самым, всё разнообразие природы, в рамках теории Ритца, сводится к одному взаимодействию, к одной модели.

    Именно такого сведeния многих явлений, взаимодействий — к немногим первопричинам, началам и добивались наиболее прогрессивные учёные, благодаря этому пришедшие к своим открытиям. Так, Демокрит, создав атомистическую теорию, указал путь сведения всего многообразия веществ к сочетаниям немногих (меньше ста) типов атомов. Так же, и Коперник построил свою теорию, опираясь на принцип, согласно которому "природа боится произвести что-то излишнее и потому одну вещь обогащает многими действиями". О том же говорили и Оккам, Ньютон, Ломоносов. Наиболее полно и глобально этот принцип единства, единой природы всех процессов Вселенной, сформулировал в своих работах Циолковский, в виде принципа монизма [159]. Интересно, что подобный же принцип всеобщего единства сущностей, сведения их к одному универсальному началу, обнаруживаем и в индийских верованиях, где многочисленные боги (силы, стихии) выступают лишь как разные проявления-ипостаси одного основного (§ 5.3). Так же и взаимодействия: сильное, магнитное, гравитационное, слабое — это лишь разные "ипостаси" электрического.

    Отметим, что ещё Демокрит, построивший атомистическую теорию вещества и света, объяснял электрические, магнитные и гравитационные эффекты — на базе единой, механической модели. Действительно, в популярном изложении учения Демокрита-Эпикура, данном Лукрецием, свет, электричество, магнетизм, тяготение, — одинаково объясняются истечением и ударами мельчайших частиц (реонов в терминологии БТР) [77]. Под действием ударов этих частиц, потоками сходящихся ко всем телам, не только притягиваются магниты (§ 4.19), но и сбиваются в кучу атомы, образуя планеты и другие космические тела. Так же, и мускульные усилия, имеющие на молекулярном уровне электрическую природу, вызваны, как догадался Демокрит, сжатием мышечных волокон под ударами тех же частиц. Эти частицы Лукреций называет то "атомами воздуха", то "частицами эфира", дабы отразить их малость, тонкость, неощутимость, всепроницаемость. И, действительно, эти частицы-реоны, отвечающие за все известные взаимодействия, имеют, по теории Ритца, ничтожные размеры.

    Теория Ритца не только сводит воедино все четыре типа взаимодействий-полей, устанавливая их общую механическую основу, но объединяет и поле с веществом, до сих пор считавшиеся разными проявлениями материи. Все полевые воздействия созданы потоками микрочастиц, — реонов и ареонов, из которых сложены электроны с позитронами, а, значит, — и все другие элементарные частицы, атомы, формирующие вещество. Выходит, физические поля представляют собой просто распавшееся, диссоциированное до реонов с ареонами вещество, — распылённую по пространству материю из микрочастиц. Именно так, в виде диссоциированной материи, представляли полевые воздействия Циолковский и Тесла [110, 159]. Они же отмечали, что такая диссоциация, испарение вещества, в процессе его распада, сопровождается, даже при ничтожной потере массы, высвобождением гигантской энергии, связанной с огромной скоростью c и кинетической энергией микрочастиц (реонов и ареонов), до которых идёт распад. Тем самым, они естественно истолковали "исчезновение" массы m в ядерных реакциях, связанной по формуле E=mc2 с выделившейся при этом гигантской энергией E, не в пример Эйнштейну, считавшему массу эквивалентной энергии (§ 3.13). Циолковский показал, что более глубокая диссоциация вещества, — до ещё меньших частиц, должна сопровождаться выделением ещё больших энергий. Удельная энергия распада вещества стремительно растёт при делении сначала молекул, потом атомных ядер, затем электронов, а, в дальнейшем, возможно, и реонов, что откроет невиданные источники энергии (§ 5.8).

    Наконец, именно теория Ритца сводит в единую систему все физические константы: заряд e и массу m электрона, скорость света c и постоянную Планка h, константы всех четырёх взаимодействий, весь набор масс и времён жизни частиц, как полагал ещё Фокс [2]. БТР позволит понять физическую сущность, природу этих констант, увязать их друг с другом, объяснить, почему они такие, а не иные, разгадать смысл ряда удивительных пропорций и соотношений между константами, включая загадочное число 1/137 (постоянную тонкой структуры) или 1040. И, если до сих пор о природе этих чисел учёные, начиная с Эддингтона, только гадали, то баллистическая теория вскрывает механизм этой гармонии чисел и геометрии, которая, как отмечали ещё Пифагор и Платон, правит миром.

    Подобно Ломоносову, Менделееву, Циолковскому и другим прогрессивным мыслителям, Ритц видел глубокое сходство всех явлений природы, единство её законов — на всех этажах мироздания. Поэтому, Ритц целенаправленно искал на базе своей теории взаимосвязь принципов механики, оптики, электродинамики, термодинамики, химии, ядерной физики и астрономии, стремясь выработать единое, сквозное их описание. Отчасти, ему удалось этого достичь, во многом его идеи подтвердил дальнейший ход развития физики, и ещё больший триумф ждёт теорию Ритца в будущем, когда откроется полное единство и взаимосвязь всех физических процессов, имеющих просто разные проявления на разных уровнях мироздания. Именно такие взгляды бытовали в древности, например у древних славян, мировоззрение которых отражено в "Велесовой книге". Она повествует о триединстве яви, нави и прави, то есть, — поля, вещества и управляющего ими закона: поле проистекает из вещества, порождается им, воздействует на него и снова обращается в вещество, по законам физики, заданным в свою очередь веществом и полем.

    Итак, универсальная кинетическая электродинамика Ритца, построенная в 1908 г., во-первых, наглядно объясняет все электродинамические эффекты. Во-вторых, сводит магнитные, гравитационные, ядерные и другие взаимодействия — к электрическим, а те в свою очередь, — к чисто механическим. В-третьих, открывает доселе неисследованные направления развития науки, позволяет познать структуру частиц, электрона, разгадать загадки антиматерии, космоса, построить единую теорию взаимодействий. Именно баллистическая теория и альтернативная электродинамика Ритца позволит вывести науку из тупика, в котором она ныне пребывает, по вине теории относительности и квантовой механики. Лишь преждевременная гибель Вальтера Ритца 7 июля 1909 г. в возрасте 31 года, вскоре после публикации его теории, помешала ему добиться признания и развития БТР. Идеи Ритца на целый век опередили развитие науки и лишь сейчас обрели строгое обоснование, как в космосе, так и в микромире. Электродинамика Ритца — наиболее общая из теорий, объясняющая весь универсум.

    § 3.17 Проверка БТР с помощью ядерной физики

    Теория Ритца затронула бы всю известную нам картину ядерных сил и, следовательно, ядерных энергий… С позиций логики, прежде чем использовать эксперимент в качестве опровержения теории Ритца, следует ещё доказать, что он демонстрирует растяжение времени, если его интерпретировать целиком на базе теории Ритца… Мы должны быть осторожны при выборе свидетельств, которые привлекаем для решения спора между двумя столь фундаментальными теориями со столь различными концептуальными базами как у теорий Ритца и Эйнштейна.

    (Дж. Фокс, "Свидетельства против эмиссионных теорий" [2])

    Теперь, когда в общих чертах стало понятным строение ядер и элементарных частиц, можно рассмотреть эксперименты по проверке БТР в области физики высоких энергий [153]. Дело в том, что в микромире, также как в мегамире (§ 2.9), несогласие с теорией Ритца возникало лишь от неверного представления картины явлений и непонимания учёными сущности теории Ритца [2]. Рассмотрим, к примеру, некорректную попытку проверить БТР и второй постулат СТО с помощью распада быстродвижущихся пионов. В таких опытах сравнивали времена прибытия гамма-лучей распада к двум счётчикам, установленным на равном удалении от подвижного источника. Поскольку скорость пионов достигала 0,2c, полагали, что, по баллистическому принципу, она увеличит скорость одного гамма-луча и вычтется из скорости противоположного. Это привело бы к запаздыванию регистрации второго сигнала, хотя на деле сигналы регистрировались одновременно, вопреки БТР [153]. Но, согласно БТР, ?0-мезоны распадаются отнюдь не на гамма-кванты, а на гамма-мезоны (гаммоны), — нейтральные частицы с массой в 66 электронных (Рис. 116). Поэтому, источником гамма-лучей служат вовсе не летящие пионы, а неподвижные ядра мишени (§ 3.7), возбуждённые столкновением с гаммонами (Рис. 136). Так что, гамма-лучи не наследуют скорости пионов, а, вылетая из ядер со скоростью c, одновременно приходят к счётчикам. Не противоречат БТР и другие ядерные опыты, где неверно найдены скорости источников.

    Рис. 136. Бомбардировка водородной мишени, вылет пионов, их распад на гаммоны и выброс гамма-лучей.


    Неудивительно, что из неверного представления картины распада, основанного на СТО, делаются и неверные выводы, противоречащие БТР и подтверждающие теорию относительности. Точно так же, для проверки баллистического принципа пробовали использовать процесс аннигиляции [2, 136, 153]. В этом опыте измерялась разница между временем прихода к двум приёмникам — импульсов гамма-излучения, от аннигиляции движущегося позитрона с электроном (Рис. 137). Приёмники располагались в разных направлениях, которые выбирались таким образом, чтобы улавливать гамма-кванты, рождённые электронами, летящими с определённой скоростью. В системе отсчёта, движущейся со скоростью центра масс аннигилирующих частиц, гамма-кванты разлетались бы в точно противоположных направлениях. Но, в лабораторной системе отсчёта, за счёт движения аннигилирующей пары и сложения скорости гамма-квантов со скоростью источника, эти направления меняются и образуют уже угол, отличный от 180°. Если б скорость гамма-лучей зависела от скорости аннигилирующей пары, то одного приёмника излучение достигало бы раньше, чем другого, чего не наблюдалось. При этом, полагали, что позитрон врезается в электрон на полной скорости, а излучающая гамма-кванты пара будет двигаться со скоростью V~0,6c. Но это, как раз, — сомнительно, поскольку с неподвижным электроном аннигилировать способен лишь заторможенный позитрон, а летящий со скоростью V~c просто не успеет прореагировать с электроном и промчится мимо. Точно так же, с ядрами взаимодействуют лишь медленные нейтроны, для чего их и тормозят в замедлителях реакторов.

    Рис. 137. Сравнение времён регистрации гамма-лучей.


    Вдобавок, в БТР аннигиляция выглядит совсем иначе, чем в СТО. Как было показано выше (§ 1.16), аннигиляция представляет собой не процесс уничтожения электрона и позитрона, а лишь их схождение по спирали — до расстояния равного, классическому радиусу электрона, с образованием электрон-позитронного диполя. Это быстрое движение зарядов по спирали и порождает аннигиляционное ?-излучение, имеющее вид обычной сферической волны, а не пары гамма-квантов, летящих в противоположных направлениях (Рис. 42). Если ж учесть, что скорость v пары электрон-позитрон должна быть почти нулевой, скорость гамма-лучей сохранится равной c. Поэтому приёмники, расположенные под любыми углами, зафиксируют одновременное прибытие гамма-излучения и в рамках БТР. Опыт не противоречит теории Ритца. Таким образом, лишь неверное понимание ядерных процессов приводит к мнимому подтверждению теории относительности и опровержению БТР.

    Известны и другие ядерные эксперименты (частично рассмотренные в статьях Дж. Фокса [2]), где измеряли скорость ?-излучения быстро летящих ядер, частиц и сравнивали её со скоростью света от неподвижных излучателей, но всякий раз решали, что скорость лучей не зависит от скорости источника. И всё же баллистический принцип выполнялся, поскольку физики либо сильно завышали скорость источников излучения (косвенно и ошибочно найденную из теории относительности), либо недооценивали переизлучение неподвижными ядрами среды, через которую шло ?-излучение (как в оптических опытах по БТР, § 1.13, § 2.9). Полагали, что высокоэнергичное гамма-излучение, в отличие от света, очень слабо взаимодействует со средой, а потому её рассеяние якобы и не влияло на скорость излучения. Но, если учесть наличие в каждом ядре многих тысяч электронов и позитронов (§ 3.9), служащих рассеивающими центрами, а также — ощутимое поглощение ?-излучения веществом, то взаимодействие гамма-лучей со средой и их показатель преломления может оказаться существенно выше, чем считалось. Поэтому, даже тонкий слой вещества может эффективно переизлучать гамма-лучи, снижая их скорость до значения c относительно среды по принципу Фокса. Это находит подтверждение в опытах с использованием эффекта Мёссбауэра, где сказывается влияние промежуточных слоёв вещества на скорость излучения (§ 1.18, § 1.19). Так что наличие на пути гамма-лучей воздуха или пластин вполне может погасить избыточную скорость лучей, сообщённую им быстро летящими источниками. А потому эксперименты, не выявившие этого избытка скорости, ничуть не противоречат теории Ритца.

    Объясняет БТР и кинематику высоких скоростей, скажем, — то, почему протоны, при столкновениях на высоких скоростях, расходятся под совсем иными углами, чем предсказывает классическая механика. Как отмечает Фокс, понять это можно и вне релятивистской трактовки [2], стоит лишь учесть, что в БТР силы взаимодействия двух стремительно сходящихся протонов направлены не вдоль соединяющей их линии, а, за счёт запаздывания взаимодействий, — немного под углом (§ 1.7). Ведь переносящие взаимодействие реоны и ареоны, испущенные протонами, заимствуют, по баллистическому принципу, их скорость, приходя с иного направления (явление аналогичное аберрации света от движения Земли, § 1.9). Но, ещё важнее, что протоны, в момент сближения и резкого изменения курса, имеют огромные ускорения, что, по эффекту Ритца, ведёт, за счёт запаздывания, — к неравному изменению сил действия и противодействия, а, значит, — кажущемуся нарушению классического закона сохранения энергии и импульса. Но, на деле, энергии и импульсы — сохраняются, а движение протонов подчиняется классическим законам, — надо лишь учесть, что в момент соударения и резкого изменения скорости протоны излучают электромагнитные волны. Если учесть уносимые реонами импульс и энергию этого излучения, а также верно определить скорости протонов (§ 1.21), то никакого расхождения с классикой не будет. Зато, в теории относительности возникающее в таких реакциях излучение и его импульс — не учитывают, потому и появляются формулы релятивистской кинематики. Если строгим расчётом учесть импульсы и энергии излучения, окажется, что ошибочны, как раз, формулы теории относительности.

    Как показал Дж. Фокс, рассмотрев совокупность ядерных экспериментов, приводимых в доказательство ошибочности БТР, ни один из них не опровергает убедительно баллистического принципа, ибо в каждом случае игнорируют некоторые важные аспекты. Разве можно проверить БТР с помощью ядерных экспериментов, когда нет чётких и адекватных представлений о микромире, нет понимания истинной структуры частиц и механизмов распада? Все представления ядерной физики сформировались под влиянием теории относительности и квантовой механики, отвергающих привычную механику. Поэтому нет ничего странного в том, что опыты, истолкованные в рамках неклассических моделей, противоречили классической физике и "подтверждали" СТО. Это — ещё один пример цикличного обоснования — типа "порочного круга", какой имел место при подобном же неклассическом истолковании явлений космоса, тоже якобы противоречащих теории Ритца. Итак, прежде чем использовать какое-либо явление для проверки баллистической теории, надо прежде построить классическую теорию этого явления. Лишь так можно проверить согласие опыта с теорией Ритца. А иначе, учёные уподобляются сторонникам геоцентрической теории Аристотеля-Птолемея, отвергавшим гелиоцентрическую теорию Коперника на том основании, что по механике Аристотеля на движущейся Земле предметы не могли б удержаться. И, всё же, именно теория Коперника оказалась верна, поскольку, вместе с космологией Аристотеля следовало отвергнуть и его абсурдную механику, заменив механикой Галилея. Так, и для анализа явлений микромира следует прежде нарисовать их классическую картину, отвергнув абсурдную механику Эйнштейна и Гейзенберга.

    § 3.18 Строение электронов и позитронов

    Быть может, эти электроны — миры, где пять материков,
    Искусства, знанья, войны, троны и память сорока веков!..
    …Их мудрецы, свой мир бескрайний поставив центром бытия,
    Спешат проникнуть в искры тайны и умствуют как ныне я …
    (Валерий Брюсов, 1922 г.)

    Несколько ранее, следуя классической физике, баллистической теории и закону сохранения массы, выяснили, что все элементарные частицы состоят, в конечном счёте, из упорядоченно расположенных электронов и позитронов (§ 3.9). Выходит, именно этим двум элементарным кирпичикам следует отвести роль тех единиц материи, из которых построен мир. Не случайно, в микромире массу электрона приняли за единичную, как некогда массу атома водорода в мире атомных весов. Как показала история науки, брать массу самой лёгкой частицы за единичную — вполне закономерно. Тот же атом водорода — это, по сути, протон, но ведь именно из протонов состоят все атомы!

    Однако то, что электрон — самая лёгкая частица из всех известных, и что все частицы состоят из электронов, ещё не означает, что электрон — это самая простая частица. Вглубь наш мир столь же неограничен, как вширь пространства и времени. Поэтому, и электрон с позитроном должны иметь внутреннюю структуру и быть построенными из ещё меньших частиц. Ранее выяснили, что электроны, испускающие реоны, и построены должны быть из этих частиц, так же, как позитроны — из испускаемых ими ареонов (§ 1.6). Выяснили также, что массы всех частиц складываются из образующих их масс электрона, принятых за единицу (§ 3.9). Но что тогда есть масса самого электрона, какова её природа? В классической физике полагали, что его инертная масса m — это мера электрического воздействия электрона самого на себя. И представляли электрон в виде заряженной сферы радиуса r, при ускорении которой действие передней части, заряда сферы на заднюю превышало обратное (§ 1.17). Разница сил и создаёт силу инерции, мешающую ускорению электрона.

    Это позволило рассчитать, так называемый, "классический радиус электрона" r. В самом деле, если для простоты разбить сферу электрона на два заряда e/2, отделённых расстоянием r, то в покое или при равномерном движении силы их взаимодействия F=e2/16??0r2 уравновешивают друг друга. Но, при движении с ускорением a, нарушается баланс сил F и F' взаимодействия зарядов (§ 1.17). Их разница ?F= F'-F= 4Far/с2= ae2/4??02 — это и есть сила инерции Fин= ma (Рис. 138). Отсюда можно выразить инертную массу электрона m=e2/4??02 и найти его радиус r= e2/4??02= 2,82·10–15 м. Именно так определяют классический радиус r электрона [82].

    Рис. 138. Деля сферу электрона на два заряда, можно выразить силу инерции, мешающую ускорению электрона, через его радиус r.


    Поясним, какой смысл мы вкладываем в термин "классический радиус электрона" и величину 10–15 м, которую физики называют "ферми". Надо думать, она выражает не столько размер электрона, сколько некий масштаб микромира, — то расстояние, на котором исчезает электрическое взаимодействие, подобно тому, как сила тяготения утрачивает своё господствующее значение, при переходе от космических — к микроскопическим масштабам. Так, и кулонова сила на расстояниях порядка 10–15 м становится исчезающе малой — либо сама по себе, либо в сравнении с силами другой природы, проявляющимися на таких дистанциях. В итоге, именно на таких пространственных масштабах могут возникать отклонения от закона Кулона [60, 137]. Недаром, и размеры ядер атомов составляют как раз около 10–15 м: на таком расстоянии кулоновское отталкивание протонов в ядре уже не мешает им сблизиться. Так или иначе, притяжение и отталкивание зарядов на расстояниях порядка 10–15 м почти исчезает (или даже меняет знак), и это расстояние a становится равновесным.

    Возможно, по той же причине, за счёт общей природы электрических и магнитных сил, на таком расстоянии иначе, чем обычные магниты, взаимодействуют и элементарные «магнитики» частиц-соседей в кристаллической структуре атома (§ 3.1). Вместо того, чтобы установиться противоположно, их моменты во внешнем поле ориентируются сонаправленно. Не в этом ли причина странного поведения частиц, устанавливающих спин и магнитный момент не только вдоль, но и против внешнего магнитного поля? А физики-кванторелятивисты "объясняют" это — абстрактным квантованием направлений спина [82]. Именно квантовая механика и квантовая электродинамика стала непреодолимым барьером на пути к пониманию строения и взаимодействия частиц, особенно электронов. Поэтому в нынешней физике возникают серьёзные трудности при объяснении радиационного трения, тормозного излучения электронов. Но все эти эффекты качественно и количественно следуют из построенной Лоренцем и Ритцем классической теории, представляющей электрон в виде заряженной сферы. Ускоренное движение этой сферы порождает не только тормозящую электрон силу (связанную с его электромагнитной массой), но и тормозное излучение, радиационное трение, которое и мешает разгону электрона.

    Итак, классический радиус электрона — это, скорее, не реальный радиус частицы, а то критическое расстояние, на котором уже неприменим закон Кулона, что признают и современные физики, хотя и не могут объяснить [60]. А, в рамках БТР, объяснение легко найдётся. Ритц считал электрон частицей, источающей реоны, — словно бенгальский огонь, рассыпающий снопы искр. Но можно допустить, что электрон выстреливает не отдельные реоны, а — собранные в пачки, блоки, обоймы, имеющие вид более массивных частиц. На некотором расстоянии r от электрона эти частицы взрываются, распадаясь на отдельные реоны. Поэтому, назовём эти частицы "бластонами" (от англ. blast — взрыв, заряд для взрыва) и обозначим латинской B. Именно радиус сферы распада r, на котором бластоны, словно разрывные осколочные снаряды, взрываются каскадами реонов, и будет классическим радиусом электрона. Тогда электрон следует уподобить ракетнице, стреляющей зарядами, как в салюте рассыпающимися сотнями осколков (Рис. 139).

    Рис. 139. Словно в фейерверке, бластоны B, выстреленные электроном e, взрываются на расстоянии r каскадами реонов R.


    Часть этих осколков-реонов улетает со скоростью c прочь от электрона, создавая кулоновское отталкивание, а часть возвращается к нему, своими ударами порождая силу инерции электрона, поскольку сфера распада бластонов, испускающая реоны, эквивалентна равномерно заряженной сфере заряда e (по его определению, данному в § 1.6). Понятно, что едва только пара электронов или позитронов сблизятся до расстояния, меньшего r, отталкивание между ними исчезнет (Рис. 140). Электрон, находящийся внутри равномерно "заряженной" сферы распада, не испытывает воздействия, так же, как любой электрический заряд внутри равномерно заряженной сферы [60]. Не исключено, что в этом, отчасти, заключена и причина ядерного взаимодействия (сильного и слабого), проявляющегося лишь на таком расстоянии. Заряды (электроны и позитроны), входящие в состав элементарных частиц ядра, будучи сближены до расстояния r, перестают притягиваться или отталкиваться, вопреки закону Кулона, что и задаёт характерный размер ядер и элементарных частиц, а также масштаб расстояний меж ними и узлами электрон-позитронной решётки. Именно это расстояние r называют "радиусом действия ядерных сил", и именно такой размер r, — порядка 10–15 м имеют ядра.

    Вообще говоря, сфера распада бластонов не имеет чётких границ, она размыта, в классическом смысле, поскольку эти разрывные частицы, выброшенные электроном, лишь в среднем распадаются на расстоянии r. Словно искры, одни из них живут чуть дольше и, как шальные пули, успевают улететь далеко от электрона, а короткоживущие — взрываются близко. Соответственно, на малых расстояниях кулоновская сила, порождаемая ударами реонов, случайным образом меняет не только свою величину, но и направление, а, потому, закон Кулона имеет лишь среднестатистический смысл и выполняется лишь на расстояниях, заметно бoльших r=10–15 м [60]. Этим можно, например, объяснить туннельный эффект — способность протонов к слиянию — даже на расстояниях, бoльших r (когда преобладать должны силы отталкивания, § 5.8), или, напротив, — способность протонов и ?-частиц отрываться от ядра в ядерных распадах на расстояниях меньших r, когда должно преобладать ядерное притяжение (§ 3.14, § 4.12).

    Рис. 140. Исчезновение кулонова взаимодействия электронов и позитронов при их сближении до расстояния L<r=3·10-15 м.


    Далее рассмотрим притяжение позитрона и электрона. При сближении до расстояния r, они тоже должны перестать взаимодействовать. Как показал В. Мантуров, энергия, выделяемая при аннигиляции электрона и позитрона — это вовсе не энергия уничтожения их массы, а, всего лишь, — потенциальная энергия их электрического взаимодействия, выделившаяся при сближении частиц до расстояния, равного классическому радиусу электрона r (§ 1.16). Дальше энергия не выделяется, поскольку частицы уже не сближаются и не взаимодействуют. При этом, когда электрон с позитроном окажутся внутри общей сферы распада, они перестанут сопротивляться ускорению: их суммарная масса, подобно заряду, — обнулится (что естественно, если их массы разного знака, § 1.6). Возможно, поэтому такие частицы и нельзя обнаружить: от малейшего воздействия такие пары нулевой массы мгновенно ускоряются и улетают, не оставляя и следа. Именно такие электрон-позитронные пары, обладая свойствами электродиполя и нулевой инертной массой, могут формировать бипирамидальные каркасы, ответственные за свойства и спектры атомов и, в то же время, не вносящие вклада в атомные веса (§ 3.3). Отметим, что речь здесь идёт лишь об инертной массе, и, если сферы распада частиц не перекрываются, то их массы суммируются по модулю. А, при частичном перекрытии сфер распада, возможно частичное уменьшение инертной массы, что, возможно, объясняет дефект массы и может найти практическое применение (§ 5.7).

    Таким образом, то, что обычно называют классическим радиусом электрона r0= 2,82·10–15 м, возможно, лишь его внешний радиус, — радиус сферической оболочки распада, тогда как сам электрон (его основная, массивная часть) заключён в малой центральной области этой сферы, своего рода электронном ядре, или керне. Именно поперечник и площадь этого электронного ядра определяет сечение поглощения электроном потока подлетающих к нему реонов. Видимо, в этом и состоит одна из причин того, что реоны имеют очень большую длину пробега в веществе. За счёт малых размеров электронного ядра, вероятность столкновения с ним реонов — ничтожна (§ 1.4), и лишь высокая плотность потока реонов приводит к тому, что часть реонов всё же поглощается, и между электронами существует электрическое взаимодействие. Примерно так же, и неуловимое всепроникающее нейтринное излучение удаётся обнаружить лишь за счёт высокой плотности потока нейтрино.

    Впрочем, если учесть, что сфера распада размыта, её параметры могут определять и сразу два масштаба электронных размеров. Вспомним, что электрон, и, соответственно, — шаг электронной сетки, решётки, имеет два характерных масштаба: один r0=2,8·10-15 м, а второй a0=5,3·10-11 м (§ 3.7). Первый, малый масштаб r0,— внутриядерный. Именно он определяет размер и структуру ядра, протонов, элементарных частиц, расстояния между электронами и позитронами в них и расстояния между протонами и нейтронами в нуклонных слоях. Он же ответственен за ядерные спектры и величину ядерных сил. Второй, более крупный масштаб a0,— внутриатомный. Именно он задаёт размер атома и структуру его электронных оболочек, расстояния между электронами на уровнях и между уровнями. Соответственно, этот масштаб, задающий размер ячеек электронной сетки, определяет атомные спектры и величину сил и энергий ионизации, притяжения и отрыва атомов (§ 4.14).

    Теперь рассмотрим, каким образом сфера распада может задавать оба этих масштаба. Прежде всего, очевидно, что для инерции электронов определяющими оказываются наиболее близкие к электрону области сферы распада, поскольку сила инерции ?F=ae2/4??02 нарастает с уменьшением радиуса r сферы, из которой к электрону сходятся реоны. То есть, наиболее существенен вклад в силу инерции и в инертную массу электрона будет от самых ближних слоёв сферы распада. Так же, и ядерные силы (по сути, кулоновские силы притяжения между электронами и позитронами, § 3.12) быстро нарастают, с уменьшением расстояния. Таким образом, классический радиус электрона r0 должен задаваться тем расстоянием, на котором начинают взрываться первые бластоны и на котором можно считать уже существенными электрические силы. Этот радиус сопоставим, вероятно, с истинным размером электрона, — электронного ядра. Второй масштаб, напротив, задаётся характерным расстоянием, на котором уже начинают сказываться отклонения от закона Кулона, что и позволяет зарядам образовывать устойчивые конфигурации, вопреки теореме Ирншоу [137].

    Таким образом, этот радиус равен предельному пробегу бластонов, — расстоянию, пройдя которое, взорвались уже практически все бластоны, а, потому, на больших расстояниях закон Кулона можно считать справедливым. То есть, область, в пределах которой происходят распады бластонов, представляет собой скорее не сферу, а шаровой слой, внутренний радиус которого задаёт ядерный масштаб r0, а внешний — задаёт атомный масштаб a0. Этот шаровой слой, по своему действию, эквивалентен шаровому заряженному слою, в пределах которого как бы размазан заряд электрона, — каждая точка шарового слоя служит источником поля, будучи источником реонов (§ 1.6). Но эта "размазанность" электрона в пространстве имеет существенно классический характер (это область, в пределах которой распадаются бластоны, генерирующие поле, поток реонов) и не связана с квантовой неопределённостью его положения. Итак, подобно галактике, Земле, биологической клетке или атому, имеющих внешний размер и внутренний (размер ядра), электрон имеет два характерных размера. Именно этот внешний и внутренний размеры и определяют характерные размеры атома и атомного ядра.

    Отклонения от закона Кулона на расстояниях порядка a0 — малы, поскольку мы ещё только-только входим в сферу распада. Однако, именно это приводит к тому, что электроны и позитроны могут образовывать устойчивые конфигурации в электронных слоях атома (§ 3.3). Так, электрон в электрон-позитронном слое должен сближаться с позитроном, под действием притяжения, — лишь до расстояния равного внешнему радиусу сферы распада, после чего их взаимодействие ослабевает, поэтому электрон замирает на равновесном расстоянии от позитрона, поскольку испытывает, кроме его притяжения, — отталкивание электрона, расположенного за позитроном (Рис. 95). Когда ослабленное перекрытием сфер распада кулоновское притяжение уравновесится кулоновским отталкиванием (в случае справедливости закона Кулона превышающим притяжение в 4 раза), образуется равновесная конфигурация из равноотстоящих электронов и позитронов, вопреки теореме Ирншоу. Именно так образуются электрон-позитронные слои атома, задающие его систему уровней и сетку, определяющую спектр. Чтобы эта сетка изменила свой масштаб, и электроны с позитронами сблизились сильнее, надо приложить некоторую энергию, чтобы припечатать их ударом (§ 3.13), дабы вступили в действие ядерные силы. Таким образом, идея бластонов и их распада в пределах шарового слоя является не просто догадкой, но гипотезой, объясняющей широкий круг фактов.

    Итак, не только атом, но, даже, электрон имеет свою достаточно сложную структуру. Поистине пророческими оказались слова "электрон так же неисчерпаем, как атом" известного поборника материализма — В.И. Ленина. Под этажом элементарных частиц, к которым относится и электрон, оказался ещё этаж субэлектронных частиц, к которым следует отнести реоны, ареоны, бластоны и, возможно, — нейтрино. Однажды нам удастся забраться ещё глубже и познать структуру самих реонов, но и на уже открытых этажах достаточно простора для исследований, которого хватит ещё на много лет вперёд.

    § 3.19 Спин и квантование магнитного момента атома

    Но мы всё ещё не у предела; после электронов или атомов электричества пришёл магнетон или атом магнетизма, который входит сейчас двумя различными путями: через изучение магнитных тел и через изучение спектров элементов… Ритц представляет себе колеблющийся атом образованным из вращающегося электрона и из множества магнетонов, расположенных один за другим. В таком случае уже не взаимное электростатическое притяжение электронов управляет длинами волн, а магнитное поле, создаваемое этими магнетонами.

    (Анри Пуанкаре, "Последние мысли", 1913 г. [101])

    Перейдём на время от субэлектронного к более привычному этажу микромира, — этажу электронов и тяжёлых элементарных частиц. Как было показано выше, и, как многие предполагали ранее [79], именно электроны и позитроны являются теми кирпичиками, из которых сложены все прочие частицы. Тогда нейтрон, весящий в 1838 раз больше электрона, должен состоять примерно из тысячи (919) электронов и из того же числа позитронов, дабы полный заряд нейтрона равнялся нулю. То же строение имеет и протон, но электронов в нём на один меньше, с чем и связан его положительный заряд. Тогда, в целом, атом и, вообще, — мир окажутся построены из равного числа электронов и позитронов.

    Однако такое представление ведёт, на первый взгляд, к противоречиям. Во-первых, магнитный момент протона и нейтрона — заметно меньше, чем у электрона, что, как считают, доказывает его отсутствие в нейтроне. Но, если нейтрон или протон составлены из многих зарядов, то их магнитные моменты вполне могут сориентироваться так, что почти полностью погасят друг друга. То, что малый магнитный момент нейтронов и протонов обусловлен лишь взаимной компенсацией моментов образующих их частиц, подтвердили эксперименты В.В. Коробкина, Р.В. Серова и Г.А. Аскаряна. Этой группе в 1980-х годах удалось разбить тела нуклонов мощным лазерным импульсом, при этом регистрировались мощные магнитные поля, в миллионы Гаусс. Это легко объяснить тем, что при делении нуклона на части, их магнитные моменты перестают компенсировать друг друга и отчётливо проявляются, доказывая, что локальные магнитные поля внутри атомов и ядер — много больше, чем их внешние, скомпенсированные поля. Так что, наличие внутри нейтрона или протона сотен электронов и позитронов — не исключено. Более того, думается, лишь электроны и позитроны обладают собственным электрическим зарядом и магнитным моментом, а уже их присутствие придаёт эти характеристики другим частицам (§ 3.9).

    Интересно, что именно Ритц первым предсказал существование стандартного магнитного момента (магнетона) у элементарных частиц, — кирпичиков, из которых сложен атом, атомный остов. К этим частицам, как выяснили, следует отнести электроны и позитроны. Однако никто теперь не связывает открытие магнитного момента электрона с именем Ритца. Все говорят или о магнетоне Вейсса, или о магнетоне Бора. Один лишь А. Пуанкаре упоминал о магнетоне и атоме Ритца. Будучи очень глубоким и смелым мыслителем, он хорошо видел перспективы и пути развития науки. Пуанкаре был не только замечательным математиком и философом науки (лично навестившим Ритца — для вручения ему награды и обсуждения математических проблем), но и первопроходцем во многих областях физики и астрономии. Думается, именно он мог бы осуществить развитие и обоснование теории Ритца. Ведь именно Пуанкаре был первым, кто принял ключевой для БТР принцип относительности явлений в оптике и электродинамике. Однако, указанные мысли Пуанкаре и впрямь оказались для него последними, поскольку в 1912 г. он умер, подобно Ритцу, не успев довести до конца свою работу. Лишь после смерти были изданы его мысли о магнитной модели атома и магнетонах Ритца.

    Магнетоны Вейсса и Бора, в отличие от магнетона Ритца, связаны не с собственными магнитными моментами элементарных частиц, а, больше, — со свойствами атомов и вещества, как целого. Магнетон Вейсса — это, по сути, элементарный магнитный момент атома, ответственный за взаимодействие атомов в ферромагнетиках. А магнетон Бора — это единица магнитного момента микромира, связанная с его квантовыми свойствами и рассчитанная впервые не Бором, а Ланжевеном. Магнитный момент атома квантуется, дискретно меняясь на величину, кратную магнетону Бора. Однако, с позиций классической науки такой характер изменения не имеет никакого отношения к квантовым свойствам поля, а обусловлен наличием стандартного момента у электрона. Поскольку электроны в атоме располагаются упорядоченно, их элементарные моменты складываются, давая в сумме магнитный момент атома, кратный моменту электрона. Изменение общего момента на дискретную величину связано с тем, что моменты электронов ориентируются всегда либо сонаправленно, либо противонаправленно, гася друг друга.

    Кроме того, у атома есть и магнитный момент, связанный с орбитальным движением электрона вокруг остова. Как легко рассчитать, этот момент не зависит от радиуса орбиты электрона и всегда равен одному и тому же значению, — как раз тому самому, пресловутому магнетону Бора. В самом деле, электрон заряда e и массы M, крутящийся по орбите радиуса R с частотой f, подобен витку с током I=ef, обладающему тем же радиусом и магнитным моментом m=I?r2=ef?R2. Из законов Планка и фотоэффекта, дающих связь энергии электрона E=M(2?Rf)2/2=hf с частотой f его обращения в атоме, следует, что f=h/2?2R2M (§ 4.3). Подставляя значение f в m, получаем, что орбитальный магнитный момент не зависит от радиуса и частоты обращения: m=ef?R2=eh/2?M. Но это в точности равно удвоенному магнитному моменту электрона m=2?. И точно, эксперимент давно подтвердил, что магнитный момент электрона, вызванный его орбитальным вращением в два раза превышает момент от его осевого вращения. Таким образом, орбитальный магнитный момент атома и вещества, действительно, квантуется, меняется дискретно, но связано это не с абстрактными квантомеханическими законами, а — с дискретно меняющимся числом атомов и крутящихся в них электронов. Таким образом, и магнетон Вейсса, и магнетон Бора — это, в конечном счёте, всего лишь следствия магнетона Ритца и его магнитной модели атома. Именно модель Ритца позволяет описать все магнитные свойства веществ.

    Возникает лишь вопрос о природе магнитного момента у самого электрона и о том, что задаёт его величину, — значение магнетона Ритца. Давно уже было понято, что магнитный момент электрона создаётся его вращением: любой крутящийся заряд, как говорилось, подобен витку с током, генерирующему магнитное поле, момент. Именно так, электрон становится подобен элементарному магнитику (Рис. 95). Интересно, что первым эту идею выдвинул всё тот же Ритц, связавший анизотропию электромагнитных свойств электрона — с наличием у него оси вращения [2]. Он же выдвинул гипотезу вращения внутриатомных частиц, наподобие волчка, для объяснения гравитации (§ 1.17) и особенностей расщепления спектральных линий (§ 3.5). Однако, поздней физики стали отрицать вращение электрона, и слово "спин", означающее "вращение", стали понимать совсем иначе, считая, что для размытого по квантовым законам электрона неправомерно говорить о таких механических свойствах, как вращение. Например, Паули, считавший частицы бесструктурными (§ 3.11), выступал против гипотезы спина, вращения электрона и снова попал впросак. Но, поскольку здесь следуем классической теории частиц, обладающих конкретной пространственной структурой, геометрической формой и размерами, вполне правомерно говорить о вращении электрона. Раз у всех электронов одинаковый магнитный момент, то и частота вращения должна быть у них одинакова. Почему же электрон вращается и что поддерживает частоту его вращения на одном и том же уровне?

    Судя по всему, вращение электрона связано с испусканием реонов. Если вспомнить аналогию электрона с пиротехническими снарядами (Рис. 7, Рис. 139), то сам собой напрашивается и простейший механизм раскрутки электрона реактивными струями реонов, как у вертящихся фейерверочных огненных колёс, или огненных мельниц (Рис. 141). Так же крутится паровой шар Герона, сегнерово колесо, — ороситель для газонов в виде вертушки, раскручиваемой струями воды [75]. Наконец, если ищем электрических аналогий, можно вспомнить описанную в "Физическом фейерверке" [148, с. 163] древнюю зрелищную игрушку — ионно-ветряную мельницу, называемую "колесом Франклина" [137]. Этот прибор представляет собой крестовину — в виде заряженной солнечной свастики, уравновешенной на острие иглы и вращаемой за счёт реакции отдачи стекающих с игл ионов, — реактивных струй ионного ветра, дующего от всех зарядов (Роуэлл Г., Герберт С. Физика. М., 1994, с. 410).

    Рис. 141. Реактивная раскрутка: а) огненного колеса; б) электрона e, пускающего бластоны B, взрывающиеся каскадами реонов R на сфере распада; в) водополивалки для газонов; г) ионно-ветряной мельницы.


    Возможно, так же вращается и заряженный электрон, испускающий реактивные струи реонов — реонный ветер. Но, возможно, вращение электрона, словно у мельницы, создаётся сходящимся из сферы распада потоком реонов, ударяющим по электрону и раскручивающим его. Если электрон случайно получит небольшое вращение, оно будет ускоряться, поскольку выбрасываемые электроном бластоны обретают окружную скорость этого вращения и передают её при своём распаде реонам, отчего те с большей частотой и скоростью ударяют по той стороне электрона, которая удаляется при вращении (Рис. 141.б). Тем самым, реоны ещё ускоряют это вращение. И так — до тех пор, пока сила реактивной отдачи от испускания бластонов не уравновесит воздействия ускоряющего вращение потока сходящихся реонов. На этом этапе скорость вращения электрона стабилизируется и автоматически поддерживается возле этого значения, обеспечивая постоянство магнитного момента электрона. Примерно так же, и крылья мельницы в потоке ветра, водяные и фейерверочные вертушки, наращивают скорость своего вращения, пока их окружная скорость вращения не достигнет величины на порядок-два меньшей скорости этого потока, после чего автоматически поддерживается на данном уровне.

    Интересно оценить, исходя из этого, скорость вращения электрона. Если магнитный момент электрона ?=eh/4?M создан его вращением, то, как нашли, ?=m=ef?r2, где r — радиус электрона. То есть ef?r2=eh/4?M. Отсюда окружная скорость на экваторе электрона V=f2?r=h/2?rM. Если взять в качестве r классический радиус электрона r0=2,8·10-15 м, получим V=4,1·1010 м/с. Это на два порядка больше скорости реонов с=3·108 м/с. Если же, как выяснили, окружная скорость вращения должна быть, как в мельнице, сопоставима со световой скоростью с потока реонов, вызывающих вращение, то получим, что гораздо естественней принять r=a0/2=2,7·10-11 м — половину межэлектронного расстояния (§ 3.1), что даёт скорость V=4,3·106 м/с, — как раз на два порядка меньшую световой скорости потока реонов. Как видим, радиус сферы распада, с поверхности которой и выбрасываются реоны и которую можно условно считать внешней границей вращающегося электрона, в действительности, равен не классическому радиусу электрона, а межэлектронному расстоянию, сопоставимому с радиусом атома. К такому же выводу о величине внешнего радиуса сферы распада электрона пришли и в предыдущем разделе (§ 3.18). Если инертная масса электрона и ядерная энергия, пропорциональные 1/r, задаются более существенным, в этом случае, — внутренним радиусом r0 электрона (точней его сферы распада), то для магнитного момента m=ef?r2, пропорционального r2, напротив, определяющим окажется внешний радиус a0. Фактически, именно по этому внешнему радиусу и циркулирует круговой ток электрона, поскольку именно там расположено большинство источников поля, бластонов, в момент их взрыва реонами.

    Как видим, ритцева модель, представляющая электрическое воздействие — через распад электрона, в процессе испускания им реонов, кроме природы заряда, автоматически раскрывает и природу спина электрона, его стандартного магнитного момента, а также причину его "квантования" и, вообще, квантования магнитного момента в атомах и телах. Обычно открытие спинового магнитного момента электрона связывают с именами С. Гаудсмита и Дж. Уленбека, а открытие спина ядра — с именем В. Паули. И никто не вспомнит, что впервые элементарный магнитный момент частиц, образующих атом и ядро, был предсказан Ритцем ещё в 1908 г., задолго до этих теоретических "открытий", сделанных в 1924–1925 гг. Именно Ритц первым предположил выделенную ось у электрона, на основе анализа непрерывного спектра ?-распада (§ 3.15). Именно Ритц предсказал в 1908 г. квантование, дискретное изменение магнитного момента ядра и образующих его крутящихся частиц, исходя из анализа атомных спектров и расщепления их линий во внешнем и внутриатомном магнитном поле. А, потому, весьма возможно, открытие спина, так же как другие открытия Ритца, было просто украдено у него кванторелятивистами. Ведь, при "открытии" спина они, повторяя Ритца, исходили из анализа спектральных линий и их расщепления в магнитном поле ядра, которого до Ритца никто даже не предполагал. Кроме того, "открытие" спина состоялось с подачи П. Эренфеста, больше других общавшегося с Ритцем и бывшего в курсе его идей. Именно Эренфест был консультантом и руководителем Гаудсмита и Уленбека, направившим их заметку в печать [154, с. 140]. При этом идею вращения электрона подал Уленбек, бывший чистым классиком, не знакомым с квантовой механикой, тогда как сторонник квантового подхода Гаудсмит, по признанию Эренфеста, просто подписал готовую заметку. В связи со всем вышесказанным напрашивается вопрос: а сделано ли вообще хотя бы одно открытие самими кванторелятивистами, или же каждое было похищено у Ритца и других физиков-классиков?

    § 3.20 Реоны, ареоны и плюс — минус масса

    Что касается современной науки, то мы здесь полностью должны отказаться от мысли, что, проникая всё глубже в область малого, мы достигнем когда-нибудь последнего рубежа. Я уверен, что от этой идеи мы можем отказаться без сожалений. Вселенная бесконечна во всех направлениях, не только в большом мире вокруг нас, но и в самом малом.

    (Э. Вихерт, 1896 г.)

    Произведём разведку самого нижнего, — субэлектронного этажа мироздания, населённого реонами и ареонами. Именно это, как увидим, позволяет понять природу массы и антимассы. Напомним: электроны и позитроны имеют массы разного знака (§ 1.6). Но, в таком случае, нейтрон, и другие частицы, образованные из равного числа электронов и позитронов, казалось бы, будут невесомы. Это, конечно, не так. Дело в том, что минусовая масса, как было отмечено ранее, — это условность, имеющая место лишь при контакте вещества с антивеществом, антиматерией, мерой количества которой и служит минусовая материальная масса. Если же речь идёт об инертной и гравитационной массе частиц, то, взятые отдельно электроны и позитроны, ведут себя, как частицы плюсовой массы, одинаково сопротивляющиеся ускорению и одинаково притягиваемые Землёй. Поэтому, в частицах, скажем, — в нейтроне, массы электронов и позитронов складываются по модулю: каждый из них противится изменению скорости нейтрона, внося свой вклад в его инертную массу.

    То же самое — с массой гравитационной. Как было показано выше (§ 1.17), она пропорциональна числу зарядов, составляющих тело. Поэтому, Земля во столько же раз сильней притягивает протон, в сравнении с электроном, — во сколько раз больше в нём зарядов, то есть, — в 1836, поскольку одинаково притягивает каждый из них. Как раз то, что все тела, атомы — целиком составлены из электронов с позитронами, и ведёт к равенству инертной и гравитационной массы тела, проверенному с большой точностью [26]. А, потому, протон и электрон должны падать с равным ускорением. В связи с этим, интересен предложенный В. Петровым опыт по сравнению их ускорений свободного падения, отличных, по его оценкам, в тысячи раз, поскольку, имея тот же заряд, электрон легче протона в 1836 раз [96]. Но подобный опыт уже проведён, и измеренное в нём ускорение свободного падения электрона составило стандартное g=9,8 м/с2 [170], а не те 919g=9000 м/с2, что предсказаны В. Петровым. Впрочем, это не опровергает поддерживаемую этим автором идею об электрической природе гравитации, пропорциональной числу элементарных зарядов тела, выдвинутую ещё И. Цёльнером и В. Ритцем. Напротив, опыт лишь доказывает, что протон и нейтрон — не элементарны, а содержат тысячи зарядов, взаимно нейтрализующих друг друга. Такое строение позволило В. Мантурову и В. Чеплашкину допустить у ядерных сил электрическую природу (§ 3.12), поскольку кулоново отталкивание протонов может быть пересилено притяжением тысяч электрон-позитронных диполей, составляющих эти протоны [79].

    Подобная модель протона позволяет понять и механизм кулоновского притяжения протона к электрону. Казалось бы, раз переносимый ударами реонов положительный импульс направлен в сторону от электрона, то, по закону сохранения импульса, протон, обладающий положительной массой, должен отталкиваться, — двигаться от электрона. Но, на деле, электрон эффективно воздействует в протоне — только на лишний позитрон (имеющий антимассу), а уже тот, притягиваясь и двигаясь к электрону, тащит за собой все прочие частицы, образующие протон и одинаково мешающие его ускорению.

    Впрочем, это упрощённая модель, и электрон должен, по-видимому, испускать не отдельные реоны, а — собранные в стандартные группы, образующие другие частицы, — бластоны B, словно в фейерверке взрывающиеся на некотором удалении (в пределах сферы распада) каскадами реонов (§ 3.18). Посредством бластонов и сферы распада, можно не только объяснить процесс слияния электрона с позитроном, но и понять природу массы, инерции частиц.

    А, главное, это позволяет наглядно описать природу минусовой массы. Напомним, что ударами реонов легко объяснить отталкивание зарядов, тогда как притяжение электрона к позитрону объяснимо лишь минусовой массой последнего, вполне естественной для минус-материи (антиматерии). Но как представить эту, введённую ещё Дираком, отрицательную массу и движение позитрона навстречу ударяющему в него потоку реонов? Оказывается, легко! Вспомним сферу распада, окружающую электрон. Из каждой её точки, — от взрыва бластонов B, во всех направленьях исходят реоны, часть которых летит прочь, ударами вызывая электрическое воздействие электрона, а часть сходится назад, порождая силу инерции, препятствующую разгону электрона. Такая же сила, но рождённая вернувшимися ареонами, мешает разгону позитрона (Рис. 142).

    Рис. 142. Ускоренно движущийся электрон или позитрон, набрав скорость V внутри сферы распада, сформированной ранее, испытывает действие силы инерции от сходящихся назад реонов.


    Теперь рассмотрим испущенные позитроном ареоны R- — в момент их подлёта к электрону. Поскольку концентрация реонов R в сфере распада электрона — огромна, то ареоны сталкиваются и аннигилируют с ними: реон и ареон исчезают (Рис. 143). И, как в случае электрон-позитронной аннигиляции, взаимодействуют лишь частицы, имеющие почти равные скорости (§ 3.17). Ареон попросту не успел бы подействовать на реон, несущийся навстречу со скоростью света. Зато ареоны действуют на реоны, с которыми им по пути. То есть, исчезают реоны, летящие к электрону с той же скоростью и с той же стороны, что и ареоны. В итоге, число реонов, сходящихся к электрону со стороны позитрона, окажется меньше, чем с обратной. И поток реонов с обратной стороны подталкивает электрон навстречу позитрону. Так же возникает и притяжение электроном позитрона, с той только разницей, что сфера распада последнего испускает ареоны, поток которых, сходящийся со стороны электрона обратно к позитрону, редеет от аннигиляции с потоком реонов, испущенных электроном (Рис. 143.б). Интересно, что Демокрит и Лукреций, создав первую теорию электромагнитного взаимодействия, посредством источаемых всеми телами потоков мельчайших частиц (реонов), объясняли электромагнитное отталкивание тел — действием ударов этих частиц, а притяжение — расчисткой пространства между телами, исходящим из притягивающего тела потоком частиц, отчего внешние потоки частиц подталкивают тела навстречу друг к другу (эпиграф к § 4.19). В этой теории гораздо меньше противоречий, чем у возникших по её следам через два тысячелетия теорий тяготения Ньютона и Лесажа.

    Рис. 143. Аннигиляция ареонов R? и реонов R, сходящихся к электрону из сферы распада, рождает силу притяжения F=F+от избытка ударов реонов с обратной стороны (а, г), равную силе отталкивания F двух электронов (в).


    А, главное, эта теория устраняет кажущееся нарушение закона сохранения импульса от движения электронов навстречу ударам ареонов. Ведь ареоны несли импульс p=mc, направленный от позитрона, а электрон приобрёл обратное движение, — к позитрону. Однако, закон сохранения всё же соблюдён, если принять в расчёт импульсы всех тел системы, включая реоны. Так, и парусная яхта идёт галсами против ветра (ударов атомов воздуха), в согласии с законами физики, если учесть импульс, уносимый водой. А в опыте Кокереля груз втягивается в трубу, вопреки напору встречного воздуха, за счёт созданного потоком разрежения перед грузом и давлением воздуха снизу, толкающим груз вверх, — против силы тяжести. Здесь тоже соблюдён закон сохранения, если учесть, кроме импульса груза и напирающего воздуха, импульс нисходящего потока.

    То же верно и для воздействия потока ареонов (ареонного ветра) на электрон. Кроме импульса ареонов и электрона, надо учесть ещё импульсы реонов, которые при контакте с ареонами, пролетая мимо, уносят импульс, равный удвоенному импульсу p электрона. В итоге, общий импульс сохраняется. Подобный механизм притяжения тел от испускания частиц, расчищающих пространство между телами, был теоретически и экспериментально обоснован д.т.н. К.П. Станюковичем, построившим теорию электричества и гравитации, альтернативную максвелло-эйнштейновской. Будучи признанным специалистом по теории горения и газодинамике взрыва, он опирался на баллистические модели, созвучные идеям Ритца (см. сборник "Вселенная", М.: Культпросветгиз, 1955). Но критика теории Эйнштейна и основанной на ней теории Большого взрыва — была негативно воспринята учёными-релятивистами, как огня боящимися возрождения идей Ритца. Поэтому, работы Станюковича были забыты, а сам он был отстранён от фундаментальной физики. И, всё же, работы этого и ряда других учёных убеждают, что поток частиц может создавать силу тяги, направленную навстречу потоку, — тезис, исходно обоснованный с помощью понятия отрицательной массы (§ 1.6).

    Как видим, в конечном счёте, представление об отрицательной массе оказалось условным, ибо это — не гравитационная и не инертная масса, а, именно, материальная масса, — относительное количество вещества (у которого знак плюс можно сопоставить материи, минус — антиматерии, а можно наоборот). Поэтому, вполне можно рассматривать электроны, позитроны, реоны и ареоны как частицы положительной массы, а притяжение разноимённых зарядов считать следствием аннигиляции материи и антиматерии. Тем не менее, минусовые массы — удобны при описании взаимодействия вещества с антивеществом (минус-веществом). Надо добавить, что не стоит рассматривать аннигиляцию, как процесс уничтожения двух взаимодействующих частиц. Их исчезновение может быть и результатом слияния в пару, которую нельзя зарегистрировать (как в случае аннигиляции электрона и позитрона § 1.16), и следствием резкого ухода частиц из области наблюдения (§ 3.18, § 5.7). Так, реон и ареон при контакте вряд ли исчезают, но, скорее, — разлетаются в результате отторжения материи и антиматерии, их принципиальной несовместимости.

    Это взаимодействие возникает между реонами лишь на сверхмалых дистанциях ? (составляющих порядка радиуса реона). Вероятно, именно оно приводит к их вылету из электрона с огромной скоростью, подобно тому, как ?-частицам, вылетающим из ядер, огромную и стандартную скорость придаёт кулоново отталкивание (§ 3.13). Интересно, что ещё Ритц сравнивал испускание электроном частиц-реонов — с распадами радиоактивных веществ, — с ?-распадом крупиц радия, испускающих постоянный поток электронов. Во всех остальных случаях реоны и ареоны можно считать практически невзаимодействующими друг с другом, — свободно движущимися материальными точками. Взаимодействие реонов, — отторжение и притяжение, сцепляющее эти частицы в электроне, говорит о существовании сил новой природы и ещё более мелких частиц-переносчиков, из которых составлены сами реоны. Но это, пока, — совсем недоступный нашему взору субреонный этаж микромира. Да и найденная модель взаимодействия — это лишь одна из возможных гипотез, имеющая перед другими только то преимущество, что, на базе немногих допущений (о реонах и бластонах), она объясняет очень многое: электрические, магнитные, гравитационные и релятивистские эффекты, причём, — наглядно, на базе классических механических моделей.

    Взаимное влияние реонов, ареонов на малых расстояниях ? позволяет глубже понять не только природу элементарных сил электрического притяжения F+ и отталкивания F-, но и причину их ничтожного различия, приводящего к появлению гравитации (§ 1.17). Напомним, что БТР, в первом приближении, приводит к равенству этих сил F+ и F-. Испущенные позитроном ареоны удаляют столько реонов, сходящихся к электрону, сколько пришло бы к нему от расположенного на том же расстоянии второго электрона. С реонами аннигилируют лишь ареоны, летящие через площадку S (на Рис. 143 заштрихована), равную сечению электрона. Поэтому, недостаток реонов, идущих к нему из сферы распада со стороны позитрона, почти точно равен их избытку, идущему от второго электрона через S, откуда F+=F-. Говорим "почти", поскольку равенство это — неточное, из-за конечного времени ? и радиуса ? взаимодействия реона с ареоном, аннигилирующих не только при параллельном движении, но и при сближении под малым углом ?. Главное, чтобы за время взаимодействия ? они не успели разойтись на расстояние, большее ?, то есть, — имели векторную разность скоростей, меньшую ?V=?/?. Это чуть расширит площадку S', в пределах которой поступают ареоны, "действующие" на электрон (Рис. 143.г). Так что, притяжение F+ — чуть больше отталкивания F-, для которого эффективное сечение взаимодействия реонов с электроном в точности равно S. Этот дисбаланс сил F+ и F- зарядов тела и порождает гравитацию.

    Предложенная модель дисбаланса более проста, чем рассмотренная в § 1.17, ибо допускает точное подобие электрона и позитрона. Надо лишь принять гипотезу о сфере распада электрона, которая попутно устраняет одну из трудностей прежней модели, а именно, выявленное неравенство воздействий W нейтральной системы зарядов на положительный и отрицательный заряды (§ 3.15). Но тогда нейтральная система, типа Земли, стала бы притягивать электроны и отталкивать протоны с позитронами, хотя, реально, только притягивает, сообщая стандартное ускорение g (вспомним опыт Петрова). Следовательно, на больших (в сравнении с размером электрона или атома) расстояниях, действие нейтральной системы на электрон и позитрон — одинаково, а значит, потоки реонов и ареонов от нейтральной системы на таких расстояниях — тоже одинаковы: производительности N электрона и n позитрона — равны. Зато N>n на малых расстояниях (сопоставимых с радиусом электрона), что может быть объяснено разным радиусом сфер распада электрона и позитрона (обе частицы ежесекундно испускают равное число бластонов, которые взрываются на разном расстоянии от центра). Тогда понятно, почему компактная нейтральная система зарядов выталкивает электрон с силой W, но притягивает позитрон, так что нейтроны испускают электроны, а протоны удерживают "лишние" позитроны (§ 3.15). Зато на больших расстояниях (заметно превышающих размер ядра и радиус сфер распада), где все испущенные электронами и позитронами бластоны уже взорвались, образованные при этом потоки реонов и ареонов точно компенсируют друг друга и способны создать лишь гравитационное притяжение, как показано выше.

    Говоря о бластонах (§ 3.18), отметим, что эти частицы должны, подобно реонам с ареонами, населять тот же нижний, субэлектронный этаж микромира. К той же категории можно отнести и другие субэлектронные частицы, — нейтрино, если только они реально существуют (§ 3.15). Впрочем, весьма возможно, что нейтрино — это и есть реоны, судя по сходству их свойств: ничтожной массе, много меньшей массы электрона, огромной проникающей способности и почти неограниченной длине свободного пробега в веществе, отсутствии ощутимых взаимодействий с другими частицами и световой скорости распространения. Возможно, на этом этаже обнаружатся и другие частицы, но об их свойствах и реальности можно только гадать, настолько ещё мало исследован этот этаж мироздания.

    Вот мы и описали, в общих чертах, самый нижний из доступных пока этажей мира. Мироздание на всех уровнях устроено сходно, всюду действуют единые законы механики. И глупо вводить для каждого этажа бесконечной цепи миров свои законы — квантовые или релятивистские. В мироздании нет ничего кроме частиц или, скажем так, — "стандартных блоков", движения и контакты которых в пустом пространстве и порождают весь видимый мир, все мыслимые формы энергии и материи. По сути, любая энергия, — это, в конечном счёте, энергия кинетическая — энергия движения частиц, равно как тепловая энергия представляет собой просто беспорядочное движение атомов. Все виды и превращения энергии означают лишь изменение характера движения тел и частиц, передачи движения от одних к другим. И поистине удивительно, как ещё Демокрит и Лукреций, осознав это, догадались, что все явления, энергии и воздействия уходят корнями в микромир, к нижним этажам мироздания, представляя собой движения, соединения и распады мельчайших частиц. Лишь познав строение частиц, нижних этажей мироздания, можно открыть доселе скрытые неиссякаемые источники чистой энергии, которые позволят взойти к верхним этажам мира, — покорить Космос (§ 5.11). Но пока современная наука надёжно блокирует доступ к этим этажам — нагромождениями абсурдов.

    § 3.21 Эфир и реоны

    В оптике успешно применялись два разных способа представления явлений: посредством эмиссии (свет движется) и посредством эфира (свет распространяется в неподвижной среде). Второй вводит абсолютное движение, тогда как первый приводит к движению света в вакууме именно так, как того требует принцип относительности: световые частицы в момент t разлетаются по всем направлениям, двигаясь с постоянной радиальной скоростью и формируя сферу с центром, движущимся со скоростью v, которую имела точка P в момент испускания. Если v постоянна, то этот центр продолжает совпадать с P.

    (Вальтер Ритц, "Критический анализ общей электродинамики" [8])

    Спустившись до самого нижнего, из доступных пока, — субэлектронного этажа мироздания, обнаруживаем, что всё пространство, вся беспредельная пустота заполнены носящимися со световыми скоростями частицами — реонами и ареонами, через посредство которых передаются электрические, магнитные, гравитационные, ядерные воздействия и свет (§ 3.16). Может показаться, что эти частицы образуют своего рода среду, — некий аналог эфира, которому прежде и отводили роль переносчика всех воздействий. Действительно, отчасти эта динамическая среда из частиц напоминает эфир, но, всё же, в корне от него отличается. Прежде всего, реоны и ареоны свободно летают во всех направлениях — с примерно одинаковой скоростью, равной скорости света c, в то время как в обычных газовых средах устанавливается максвелловское распределение частиц по скоростям. Во-вторых, реоны и ареоны практически не взаимодействуют, не сталкиваются, двигаясь независимо и прямолинейно, что в корне отличает их от частиц среды, где частицы сталкиваются или колеблются возле средних положений. При огромной плотности потока реонов их свободное движение становится возможным, благодаря отсутствию взаимодействий между реонами и малым, почти точечным, их размерам, которые делают вероятность столкновений — ничтожной, а длину свободного пробега — очень большой.

    Из-за отсутствия взаимодействия частиц в такой среде не могут возникать волновые процессы. А, именно, волнами в эфире прежде объясняли свет, электромагнитные волны, в которых воздействие по эстафете передавалось от точки к точке — частицами эфира, при их столкновениях. Поэтому, в эфире скорость распространения электромагнитной волны связывали с его упругими свойствами. Причём, эфир наделяли огромной жёсткостью, для обеспечения высокой скорости световых сигналов. А в модели Ритца скорость передачи электрических воздействий, включая свет, связана со световой скоростью движения реонов. Столь высокие скорости для микрочастиц, возникающих в ходе распадов, — обычны, в отличие от сравнительно медленных волн в средах. Не знавшие этого учёные прошлого, такие как Гюйгенс и Эйлер, отвергали корпускулярную гипотезу как раз на том основании, что не могли помыслить, как материальные тела, частицы могут двигаться со столь высокой скоростью, а, потому, считали движение света возмущением, распространяющимся в неподвижной среде. Удивительна на этом фоне прозорливость Галилея, который отметил в "Беседах", что как раз такие высокие скорости должны быть присущи светоносным микрочастицам (реонам), ускоряемым даже ничтожной силой и своими ударами в сфокусированном пучке света плавящим металлы, разбивая их тела на атомы. Так же, и Кеплер (первооткрыватель законов движения планет и основатель научной оптики) защищал теорию истечения света и считал, что его частицы в космосе движутся с гигантской скоростью. Да и задолго до Галилея с Кеплером о том же говорили древние атомисты, Демокрит и Лукреций [77]:

    Лёгким, во-первых, вещам, из мелких тел состоящим,
    Чаще, чем всяким другим, быстрота, очевидно, присуща,
    Солнечный свет, как и жар, относятся к этим предметам,
    Так как они состоят из мелких начальных частичек;
    …Прежде всего потому, что довольно ничтожной причины,
    Что бы их, сзади толкнув, далеко уносила и гнала.

    Впрочем, многие учёные критиковали корпускулярную теорию истечения света — как раз на том основании, что скорость света была не универсальной константой среды, а определялась скоростью выбрасывания частиц. Поэтому, полагали, что световые лучи разного цвета двигались бы с разными скоростями, поскольку состояли бы из различных частиц. Такое возражение приводилось и против теории света Ньютона, и в XX веке Эйнштейном против теории Ритца [6]. По мнению Эйнштейна, Ритц, отвергая постулат о постоянстве скорости света и допуская зависимость её от скорости источника, фактически отрицал существование константы c, поскольку было не ясно, с чем она связана. Это доказывает, что Эйнштейн даже не понял сути баллистической теории Ритца. В теории Ритца, в отличие от ньютоновской, свет любой частоты, любого цвета переносится одними и теми же стандартными частицами-реонами. А цвет, то есть частота и длина волны света, задаётся частотой следования скоплений реонов и пространственным периодом образуемых ими периодичных распределений (§ 1.9, § 1.11). Поэтому, в вакууме скорость лучей всех цветов получается одинаковой и равной скорости c выбрасывания этих частиц-реонов электронами. Причём, скорость эта должна быть стандартна с большой точностью, так же, как скорость альфа-частиц, выбрасываемых одинаковыми ядрами, или скорость выстреливаемых одной и той же пушкой снарядов (§ 1.5). Именно эта "дульная скорость" выброса частиц-снарядов и задаёт константу c в системе отсчёта, связанной с источником и электроном. Существование такой стандартной скорости не противоречит тому, что в системах, движущихся относительно источника, эта скорость иная.

    Отметим, что ещё у Демокрита и Лукреция, у которых Ньютон заимствовал многие свои идеи (включая атомистическую теорию, гипотезу корпускул и идею о том, что белый свет составлен из всех цветов радуги [77]), говорилось, что свет переносят однотипные частицы, а цвет определяется лишь их пространственными характеристиками. Эта мысль в корне отличалась от более поздней ньютоновской идеи о различии масс и размеров частиц света, и больше соответствовала идее Ритца о стандартных частицах-переносчиках света. Таким образом, концепция Ритца о том, что стандарт скорости света задан скоростью испускания частиц-реонов, выглядит гораздо естественней, чем гипотеза о скорости c как мере упругости всё заполняющей среды. Ведь плотность и упругость эфира могут меняться от точки к точке, как меняется упругость воздуха, воды, почвы на Земле, и, соответственно, — меняется скорость распространения в них звука или света.

    Итак, в средах скорость волн определяется взаимодействием и столкновением частиц, тогда как у реонов скорость, с которой они переносят свет, задаётся скоростью c самих частиц. А волновыми свойствами свет обязан не волновым процессам в среде (возмущением, расходящимся в неподвижном эфире), а движением самой среды, — реонов, образующих в пространстве периодичные сгустки-разрежения, волнообразные распределения концентрации и скорости частиц, переносимые со скоростью света, вместе с потоком частиц (§ 1.9). Такое свободное движение частиц и перенос ими световых волн позволяет понять, почему волны не рассеиваются, не теряют энергию в вакууме, даже проходя гигантские космические расстояния.

    Величайшая проблема эфирной теории Максвелла в том и состоит, что эфир не мог бы переносить свет на огромные космические расстояния, без потерь энергии и рассеяния. Ведь в любых материальных средах, включая эфир, энергия волн постепенно расходуется, переходя в тепло. Имеют место диссипативные процессы, поскольку волновой процесс, вовлекающий в движение всё новые частицы, постоянно отдаёт этим частицам часть своей энергии, ибо в материальной среде не может быть полной обратимости процессов, всегда есть гистерезис, пусть даже ничтожный. Именно так постепенно затухает, к примеру, звуковая волна в воздухе. Однако, вопреки электродинамике Максвелла, мы видим далёкие звёзды и галактики, практически без затухания и рассеяния идущего от них света. В отличие от частиц эфира, реоны не взаимодействуют друг с другом, летят свободно и прямолинейно, а, потому, несомый ими свет, в принципе, не может затухать и рассеиваться, раз нет энергообмена. Именно обмен энергией (её взаимопревращения при столкновении и взаимодействии частиц, полей), необходимый для передачи волнового возмущения в среде типа эфира, ведёт к трению, необратимой утрате энергии.

    Потому и провалилась теория эфира, как материальной среды, проводящей колебания: любые материальные среды — не идеальны. Любые движения и колебания в них сопровождаются трением, потерями энергии. Именно столкновения частиц среды, необходимые для распространения волнового процесса, ведут к рассеянию энергии волны и росту энтропии. В БТР такой проблемы нет: у реонов, с момента их испускания, нет столкновений и взаимодействий, вплоть до момента их попадания в приёмник, — оттого нет и потерь, неизбежных в материальных средах. Зато в максвелловской эфирной теории эту проблему невозможно устранить рациональным путём. Поэтому физикам, осознавшим порочность эфира, и пришлось выдумать, для спасения теории Максвелла, идеализированную, нематериальную, невесомую среду-носитель, — абстрактное электромагнитное поле: состояние пустого пространства, заданное в каждой точке набором четырёх чисел. Разумеется, о его физических свойствах нельзя ничего сказать и нельзя никак обнаружить поле само по себе, ввиду его нереальности, нематериальности. Это поле, заданное и исследуемое чисто аналитическим путём, невозможно описать механически, хотя, вопреки невесомости, нематериальности, оно непостижимым образом взаимодействует с весомыми материальными телами. А это мистика, математический формализм. Поэтому, если ритцеву электродинамику можно назвать "баллистической", то максвеллову — "кабалистической", основанной на мистических, не имеющих отношения к реальности операциях над буквами и цифрами. Не зря, Максвелл, как и некоторые нематериалистически мыслящие учёные, увлекался сверхъестественным, в том числе демонологией. Так, в физике широко известен термин "демон Максвелла". Словно и впрямь это сам дьявол в лице Максвелла направил науку по ложному пути. Ведь, как видели, и теория относительности, и квантовая механика — это лишь следствия столь же абстрактной, формальной и иррациональной теории Максвелла.

    И, напротив, поиск простых, рациональных объяснений явлений природы заметно продвигает науку вперёд. Так, секрет успеха атомистической теории Демокрита, сумевшего правильно понять многие явления, заключался в том, что он отверг мистику, нематериальные сущности (именно такой сущностью является поле) и признавал, что в мире существуют лишь атомы, имеющие свойства, и — пустота (небытие), не имеющая свойств [31]. Так что, физическому полю (нематериальному эфиру) нет места в материалистической атомистической концепции. Если же мы считаем, в рамках атомистической концепции, эфир — образованным из независимо летящих частиц, то приходим к баллистической теории Ритца, где эти частицы представлены реонами. Именно такого корпускулярного взгляда на эфир придерживался Ньютон, Ломоносов, Менделеев, Циолковский, Тесла. Да и сам Демокрит и Лукреций не отрицали эфир в такой форме. Все эти учёные говорили об эфире в своих произведениях, как о мельчайших частицах, наполняющих мировое, космическое пространство, как о первооснове, из которой построена материя. Именно в такой форме вводили эфир и древние. Не зря, Платон, много взявший у древних мудрецов, считал эфир состоящим из частиц в форме додекаэдра [144]. У того же Платона в "Тимее" излагались и начатки теории истечения света, во многом созвучной теории света Демокрита. Ошибочен лишь принятый физиками XIX в. аристотелев сплошной неподвижный эфир, заполняющий без зазоров всё пространство и пребывающий в неподвижном состоянии или вихревом движении, как у Декарта, в противоположность прямострельному независимому движению частиц-реонов, переносящих все воздействия. Ложное понимание физиками-схоластами эфира, как неподвижной сплошной среды, критиковал в своих "Диалогах" и Джордано Бруно, показавший, что древние подразумевали под эфиром именно быстрые частицы-бегуны, переносящие воздействия, о чём говорит уже сам перевод древнегреческого слова "эфир". Итак, эфир, по Платону и Демокриту, — это тончайшая атмосфера космоса, остающаяся в пространстве, если его очистить, удалив все атомы и образующие их частицы.

    Неподвижный сплошной эфир недопустим ещё и по той причине, что вводит абсолютную систему отсчёта, с ним связанную. Но введение такого абсолюта — эквивалентно введению Аристотелем абсолютного центра мира и абсолютных границ Вселенной. Не случайно, именно Аристотель был одновременно автором гипотезы об абсолютном неподвижном эфире и геоцентрической, замкнутой в сферу, модели мира. Не случайно, и Аристотель XX века, — Эйнштейн, задержал крах теории Максвелла, основанной на эфире (поле), и возродил аристотелеву космологию (замкнутой, ограниченной Вселенной). Но мир, как показали Демокрит, Бруно, Циолковский, не может иметь центра и границ, будучи беспредельным (§ 2.6). А, потому, к безграничному пространству неприменимо понятие покоя или движения, которые проявляются, так же, как центры и границы, — лишь в качестве относительных, имеющих локальный, условный характер. Вот почему, абсолютный неподвижный и сплошной эфир — это абсурд. Если же мы признаём, что эфир не сплошной, а имеет части, то эти части, — атомы эфира, должны двигаться относительно друг друга. Таким образом, исчезает абсолютно покоящаяся система отсчёта, ибо мы уже не имеем привязок, не имеем тела, к которому можно было бы привязать абсолютную систему. И абсолютное время, и абсолютное пространство — должны быть привязаны к каким-то телам и их равномерному движению. Но, поскольку не существует таких тел, которые абсолютно покоятся или движутся строго равномерно, не будучи подвержены влиянию других тел, то надо признать, что и абсолютов нет: они чистая идеализация.

    Итак, главное преимущество БТР перед прежней теорией эфира в том, что реоны и ареоны летят в вакууме свободно, без соударений, и в переносе волнового распределения участвуют одни и те же частицы, не обменивающиеся энергией в процессе движения, а, потому, — не теряющие её. Вот почему, свет и другие излучения всегда движутся в необозримых просторах космоса прямолинейно, без рассеяния и потерь энергии. Похожую модель эфира строили Циолковский и Менделеев, считавшие эфир не какой-то абстрактной, сплошной средой, а крайне разреженным газом, субатомные частицы которого практически не взаимодействуют друг с другом. Эти вездесущие и всепроницающие элементарные частицы имеют массу много меньше массы электрона и световую скорость движения [99, с. 42]. Именно световая скорость таких частиц и определяла, по Циолковскому, скорость света. Эту концепцию он изложил в своей работе "Кинетическая теория света" [159], ныне забытой и, возможно, — навсегда похороненной в архивах.

    К тем же взглядам на природу переносчиков света ещё задолго до опыта Майкельсона пришёл и величайший знаток электричества Никола Тесла, принявший, как видно из его работ, теорию Ритца и отвергший эфир с теорией Максвелла, как экспериментально, так и на основе теоретического анализа. Он писал: "Когда доктор Генрих Герц проводил свои эксперименты в период с 1887 по 1889 год, его целью была демонстрация теории, заключающейся в том, что среда, которая наполняет всё пространство, называется эфир, не обладает структурой, очень тонка, однако одновременно чрезвычайно прочна… За много лет до этого я установил, что такая среда не может существовать, и мы должны принять точку зрения, которая заключается в том, что всё пространство заполнено газообразным веществом" [110]. Такой корпускулярный подход к проблеме переноса света в среде не только решал все теоретические проблемы эфира, но и объяснял результат опыта Майкельсона и звёздной аберрации (§ 1.9).

    Отметим, что данное Ритцем описание электрического и гравитационного взаимодействий тел, посредством ударов реонов, очень напоминает известную гипотезу другого швейцарского физика, Ж. Лесажа, придуманную ещё в середине XVIII века и неоднократно упомянутую в работах Ритца. Согласно Лесажу, притяжение тел вызвано беспорядочно носящимися в пространстве микрочастицами эфира, которые, ударяя в тела, подталкивают их навстречу друг другу. При этом Лесаж, опираясь на древнюю атомистическую теорию взаимодействий Демокрита и Эпикура о снующих в пустоте частицах [106], показал, что из неё сразу вытекает ньютонов закон тяготения (равно, как из реонной модели Ритца — прямо следуют законы Кулона и Ньютона, § 1.4, § 1.17). Интересно, что Лесаж, в отличие от его последователей, называл эти частицы не "атомами эфира", а просто "ультрамировыми частицами", отмечая их ничтожные размеры и огромную скорость. Этим он объяснил их высокую проникающую способность и отсутствие соударений друг с другом. Так же, и Ритц спустя век обосновал свободное движение реонов и почти неограниченную длину свободного пробега — их малыми размерами, позволяющими рассматривать реоны, как материальные точки.

    Вдобавок, Лесаж задолго до Резерфорда догадался, что основной объём вещества составляет пустота, тогда как вся масса тел и атомов сосредоточена в малых областях, периодично рассеянных по телу [107]. Представив тела и атомы в виде пустотелых ячеек и клеток, основная масса которых собрана в тонких прутьях постоянного сечения, Лесаж не только предугадал существование ядер и электронов стандартного размера, но и кристаллическую, решётчатую структуру тел и элементарных частиц (§ 3.1, § 3.9). Благодаря такому строению даже плотные тела представляют для ультрамировых частиц (и реонов) ничтожную преграду, словно редкие прутья клетки — для песчинок, подхваченных ветром и пролетающих сквозь ячейки решётки. Это объясняет, почему вещество практически не задерживает, не экранирует гравитационное воздействие. Атомы экрана задерживают лишь ничтожную часть потока частиц, оказывающую гравитационное воздействие на преграду, а основная, прошедшая часть потока действует на тела, расположенные за экраном. Аналогично и БТР объясняет выдвинутый Ритцем тезис о том, что реоны свободно пролетают сквозь плотные тела, не меняя направления и скорости (ввиду ничтожных, точечных размеров электронов, электронных ядер, образующих вещество и поглощающих реоны, § 1.4, § 3.18), а потому доносят электрическое и гравитационное воздействие до самых глубоких слоёв вещества.

    Ныне и впрямь известно, что микрочастицы, — электроны и протоны, летящие со скоростью, близкой к скорости света (с которой движутся реоны), легко пронзают сравнительно толстые слои вещества. Так что же говорить об ультрамировых частицах Лесажа (или реонах), которые, имея много меньшие размеры и не подвергаясь действию полей (ими же несомых), должны легко пронзать гигантские толщи вещества, словно пресловутые нейтрино. Всё это характеризует Лесажа и Ритца, этих славных сынов Швейцарии, как гениальных провидцев, угадавших свойства ядер и элементарных частиц, а также их строение. Впрочем, в отличие от БТР, гипотеза Лесажа имела ряд недостатков. Так, если учесть отражения частиц Лесажа телами, воздействия вообще не возникнет. Этих недостатков лишена теория реонов, хотя бы потому, что они не отражаются, а — лишь испускаются и поглощаются зарядами. Поэтому, больше ритцева теория напоминает не теорию Лесажа, а исходную теорию Демокрита, Ньютона, Римана и Пирсона, где потоки частиц просто поглощаются центрами тяготения (заряда), увлекая своим движением тела, которые они пронизывают [77, 99, 107]. Впрочем, Лесаж уточнил свою теорию, приняв, что ультрамировые частицы прилипают к частицам вещества при ударе, а, спустя время, — снова вылетают, уже в ином направлении. Это ещё больше сближает теорию Лесажа с теорией Ритца, где реоны поглощаются электроном, а после снова отделяются от него (§ 1.5).

    Максвелл и Пирсон тоже предлагали в чём-то схожую механическую модель, считая положительные заряды источниками эфирной жидкости, а отрицательные — стоками, чем объясняли взаимодействие зарядов и масс [107]. Но, во-первых, опыт отверг сплошной неподвижный эфир, подтвердив классический принцип относительности для электродинамических явлений и теорию Ритца. Во-вторых, модель Ритца — более естественна, поскольку не вводит нематериальных, неощутимых жидкостей, а описывает всё посредством движения и распада элементарных частиц, — явлений известных, не требующих преумножения сущностей. В-третьих, модель Ритца избавлена, как видели, от всех пороков эфира. В том числе, среда из реонов объясняет поперечный характер электромагнитных волн, статические электрические и магнитные воздействия (Часть 1), что было не под силу теории эфира, который попеременно считали то бесконечно твёрдым, то бесконечно лёгким и проницаемым. На многочисленные недостатки концепции эфира указывали многие учёные, и, особенно, — Ритц.

    Наконец, ещё одна существенная проблема эфира состояла в том, что тела, движущиеся в нём с космическими скоростями, должны были бы испытывать сопротивление, тормозящее движение планет, и те бы падали на Солнце. Может показаться, что так же будут тормозиться и тела, движущиеся в пространстве, заполненном реонами. Ведь любое тело, движущееся в потоке реонов, должно испытывать сопротивление. Но, кроме реонов, в пространстве носится такое же число ареонов, оказывающих противоположное воздействие. Эти воздействия взаимно нейтрализуются, и, потому, на тело, заряд, даже если они несутся в вакууме с огромной скоростью, не действуют тормозящие силы. С другой стороны, наличие в пространстве реонов и ареонов, хоть и не влияет на механические и оптические явления, задаёт, всё же, некую выделенную систему отсчёта. Это — такая система, в которой средние потоки реонов (и ареонов) во всех направлениях — одинаковы. Все эти реоны испущены телами из наблюдаемой части Вселенной (§ 2.5). Поэтому и такая система отсчёта не будет абсолютной: в ней мы сможем находить лишь скорость относительно ближайшего нашего окружения в бесконечной Вселенной, так же, как сейчас астрономы определяют среднюю скорость Земли относительно ближайшего звёздного и галактического окружения или реликтового фона, на основании эффекта Доплера. В других участках Вселенной иные системы отсчёта, привязанные к реонной среде, могут двигаться относительно нашей с заметными скоростями.

    Таким образом, хотя динамическая среда из реонов и ареонов по своим свойствам во многом аналогична эфиру, она всё же существенно отличается от него, обеспечивая адекватное механическое описание всех явлений и взаимодействий — на единой основе. Причину, по которой эфир порой ошибочно пытаются ассоциировать с реонами, состоит в следующем. Давно стало ясно, что дальнодействия не существует: тела не могут непосредственно действовать друг на друга на расстоянии, — в пространстве между ними должен быть некий материальный посредник (промежуточная среда или агент), переносящий воздействие от одного тела к другому. О его реальности свидетельствует, хотя бы, запаздывание света и воздействий, идущих от источника к приёмнику. Следовательно, это воздействие существует в каком-то виде в пространстве между источником и приёмником, а, ввиду материальности его носителя, переносится с конечной скоростью, что признают и современные физики [60]. То есть переносчик-среда обладает массой. Эту среду и назвали "эфиром". В таком смысле эфиром можно назвать и потоки реонов, пронизывающие все тела, всё пространство и тоже переносящие все виды взаимодействий. Но это совсем не тот эфир, под которым понимают то абстрактную сплошную нематериальную среду-флюид без физических свойств (поле), то среду типа жидкостей и газов, где воздействие передаётся в виде волн, распространяющихся в среде от точки к точке, без переноса самой среды.

    Поэтому, во избежание путаницы мы не говорим о реонах как о среде типа эфира, а считаем их просто независимо движущимися частицами, типа частиц космических лучей, тоже пронизывающих всё пространство и носящихся с околосветовыми скоростями. Отметим, что именно в форме свободно носящихся частиц, заполняющих космическое пространство и служащих первоосновой всего, питающих материей и энергией (силами, светом) все тела, вводили эфир в своих работах и Демокрит с Лукрецием Каром [77]. Подобно реонам, эфир они представляли потоками высокоэнергичных частиц, наполняющих космос, считали эфир первоисточником всех тел, взаимодействий и просто космической средой, свободным пространством, откуда поступает материя и энергия. Примерно так, и мы ныне употребляем слово "эфир" в выражениях "транслировать в эфир", "мы в эфире" в смысле приёма-передачи сигналов в пространство, хотя прекрасно знаем, что эфира нет.

    Итак, следуя концепции Ритца, надо отвергнуть сплошной неподвижный эфир, равно как электромагнитные поля и волны, в их обычном понимании. БТР требует либо полного упразднения этих понятий, либо коренного их пересмотра, поскольку некий аналог эфира (§ 3.21), полей (§ 1.8) и волн (§ 1.11) возникает и здесь. Хотя теория Ритца и содержит общие моменты с моделями эфира, квантовой электродинамикой (КЭД) [106], утверждать их равноправие — это как равнять модели Птолемея и Коперника, словно не важно, Солнце ли вращается вокруг Земли или Земля — вокруг Солнца. Тоже схожие модели, — а какая разница! Так и модель Ритца — проще и естественней моделей Максвелла и КЭД. Если максвеллова модель ошибочна, неадекватна реальности, то модель Ритца отвечает и физическому, и жизненному опыту (здравому смыслу). Поскольку Ритц сводил все электрические эффекты к испусканию и столкновению частиц, его модель была для электродинамики тем же, чем молекулярно-кинетическая теория (МКТ) — для термодинамики. МКТ свела давление, тепловые, диффузионные, звуковые процессы к движению атомов. А Ритц объяснил электрические, магнитные и световые процессы движением реонов. Таким образом, именно реоны и ареоны оказываются пока наименьшими частицами и выполняют функции эфира не только в качестве квинтэссенции, — первоосновы, стройматериала мироздания (элементарных кирпичиков, из которых сложены все тела и частицы), но и в качестве первоисточника, переносчика всех известных типов взаимодействий (сильного, электромагнитного, слабого и гравитационного, § 3.16), будучи, по сути, ещё и цементом, который связывает друг с другом и отделяет друг от друга частицы-кирпичики мироздания.


    ОСНОВНЫЕ ИДЕИ ЧАСТИ 3

    1. Магнитная модель атома Ритца ещё в 1908 г. классически объяснила все особенности спектра водорода и щелочных металлов, как результат колебаний электронов в магнитном поле атома возле устойчивых положений. Это позволяет отказаться от планетарной и квантовой модели атома Бора.

    2. Классическая модель атома Томсона-Ленарда, представляющая остов атома в виде набора связанных в пары зарядов, образующих бипирамидальную структуру, позволяет объяснить строение электронных слоёв и химические свойства атомов, их связь со спектрами и положением в таблице Менделеева.

    3. Магнитная модель атома Ритца, будучи объединена с моделью атома Томсона, классически объясняет расщепление линий по эффектам Зеемана, Штарка, а также ряд тонких особенностей спектров.

    4. Классическая модель атома устанавливает связь строения атома со строением ядра, благодаря общему принципу укладки электронов и нуклонов в бипирамидальном каркасе, естественно объясняя магические числа нуклонов.

    5. Идея Томсона о кристаллической структуре атома позволяют установить строение протонов, нейтронов и других элементарных частиц, образованных из двух-трёх типов мезонов, в свою очередь образованных из связанных в кристаллическую решётку электронов и позитронов. Отсюда естественно следуют значения масс элементарных частиц, времена их жизни и другие свойства, а также — некий аналог таблицы Менделеева для них.

    6. Кристаллическая модель частиц и теория Ритца объясняет ядерные (сильное и слабое) взаимодействия как частные проявления электрического. То есть все типы взаимодействий (включая гравитационное) сводятся к одному — электрическому, в свою очередь сводящемуся к механическому.

    7. Из теории Ритца следует, что в ядерных реакциях материя сохраняется, причём распады частиц оказываются не спонтанными, а индуцированными внешним источником, например, — ударами реонов. Это позволяет пересмотреть ряд ядерных экспериментов, считавшихся подтверждением теории относительности и опровержением теории Ритца, в пользу последней.

    8. Ритцева модель электрона впервые позволяет исследовать субэлектронный этаж мироздания, выяснить природу инертной массы электрона, механизм генерации его магнитного момента и спина, установить строение электрона и позитрона, природу материи и антиматерии, а также причину их асимметрии.









    Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

    Все материалы представлены для ознакомления и принадлежат их авторам.