|
||||
|
ГЛАВА 1. Г Е О М Е Т Р И Я 1. ЭМПИРИЧЕСКАЯ ГЕОМЕТРИЯ Основы эмпирической геометрии, как науки о непосредственно наблюдаемом пространстве были заложены в глубокой древности: в Египте, Вавилоне и Греции. Итоги многовековых размышлений о количественных соотношениях между видимыми, непосредственно наблюдаемыми объектами были подведены в III в. до н. э. Евклидом. В течение почти 2.5 тысячелетий евклидова геометрия является одним из столпов школьной математики. практически в неизменной форме она дошла до нашего времени. Случай этот уникален. почти забыта физика Аристотеля, о математическом анализе Архимеда вспоминают лишь историки математики. Школьная же геометрия базируется на геометрии Евклида. Разница в основном лишь в методике изложения. В чем причины поразительной живучести евклидовой геометрии? На наш взгляд, ответ на этот вопрос многозначен. Во-первых, она хорошо отображает простейшие количественные отношения форм реальных объектов, во-вторых, евклидову геометрию характеризует поражающая логичность и методическая завершенность, наконец, евклидова геометрия является превосходной основой для воспитания логического мышления на общедоступных примерах, имеющих широкие практические приложения. Поучительно подробнее разобрать приведенные аргументы. Геометрия (как указывает ее название) родилась из практических задач — измерения площадей земельных участков. Например, простейший вопрос об отношении площадей круга и квадрата нельзя решить без помощи геометрии (в рамках элементарной математики). Именно задачи о сравнении площадей земельных участков очень часто приходилось решать древним геометрам. Отметим, что актуальность решения подобных задач сохраняется и поныне. Можно с уверенностью сказать, что читатель сталкивается с вопросом о длинах, площадях и объемах различных предметов. Основные понятия геометрии Евклида прочно вошли в нашу жизнь. Образы точки (например, в письме), плоскости (стены комнат) и объемов)дома, в которых мы живем) — наша повседневная действительность. Евклид (точнее, его геометрия) в достаточно общем виде решил одну из важнейших практических проблем: количественного сравнения реальных объектов с разными формами. Созданная им геометрия была облечена в столь безукоризненную изящную форму, что актуальная для современности проблема «практического внедрения» была решена без задержек. Несомненно, что «живучести» геометрии Евклида и ее быстрому «внедрению» способствовала ее адекватность кинематике абсолютно твердых тел. Неизменность их формы при перемещениях оптимально описывается в рамках евклидовой геометрии. Подчеркнем далее, что вместе с геометрией Евклида в математику пришла абстракция. Для геометрии (по крайней мере в ее привычной формулировке) безразлично, сравниваются ли, например, объемы однородных предметов (двух комнат) или различных (например, гаража и автомашины). Геометрия как часть математики отвлекается от сущности объекта исследования. И в этой особенности имеются как сильные, так и слабые стороны. Сила традиционной геометрии — в ее общности, универсальности. Слабость — в абстрагировании, создающем предпосылки для размытия основополагающих понятий геометрии, размытия, затрудняющего их сопоставление с реальными объектами, явлениями или процессами. До определенного времени этому обстоятельству не придавали серьезного значения, однако, когда наступила пора подвергнуть геометрию критическому переосмысливанию, высветилась эта слабая сторона геометрии. Возникла парадоксальная ситуация: самая точная и, по-видимому, самая наглядная наука — геометрия базируется на понятиях, не поддающихся точным определениям. Чтобы оправдать такое сильное утверждение, полезно напомнить некоторые «школьные» истины. Учитель, начиная обучение геометрии, произносит слова: «Точка — объект, лишенный протяженности, линия — объект, характеризуемый длиной, но лишенный ширины» — и затем иллюстрирует эти определения, отмечая мелом на доске точку и проводя линию. Однако, размеры такой точки ~ 1 мм, ширина линии также ~ 1 мм — символ точечности? Это утверждение в значительной степени базируется на авторитете учителя. Если постараться, можно, используя тонкое перо, свести размеры «точки» или «ширины» линии до ~0.1 мм, но и эта величина не соответствует геометрическому определению точки или линии. Опираясь на весьма тонкие оптические методы, можно уменьшить размеры точки до 10**-10 см. Данные о рассеянии некоторых элементарных частиц свидетельствуют, что их размеры ~<10**-16 см. Однако и в этом случае не исчезает «проклятый» вопрос: можно ли объекты, характеризуемые столь малыми величинами, полагать «точками»? Те же трудности возникают при попытках эмпирически воспроизвести другое основное понятие геометрии — прямую линию. Обычно полагают, что эталоном прямой является луч света, распространяющийся в пустом пространстве. Однако в соответствии с основными принципами оптики и квантовой механики ширина пучка света по порядку величины равна длине волны ?, а это значение невозможно свести к нулю. Но главная проблема, пожалуй, не в конечности величины ?. Положение о прямолинейности распространения света в пустоте (даже в пренебрежении значением ?) само является лишь постулатом, требующим независимого доказательства. В нашем распоряжении нет априорно идеальной линейки, которая позволила бы проверить прямолинейность распространения светового луча. Следовательно, это утверждение имеет лишь полуинтуитивное обоснование, основанное на том эмпирическом факте, что в нашем распоряжении нет других методов, позволивших прочертить абсолютно прямую линию между двумя точками. Однако даже это свойство света не гарантирует его прямолинейность. Допустим, что пространство имеет форму сферы. Кратчайшее расстояние на сфере — отрезок большого круга, отнюдь не тождественный прямой. Поэтому утверждение: световой луч прочерчивает прямую эквивалентно тезису: наше пространство плоское, евклидово. А этот тезис сам нуждается в эмпирическом образовании. К этому вопросу мы далее будем неоднократно возвращаться. 2. ГЕОМЕТРИЯ КАК ФИЗИКО-МАТЕМАТИЧЕСКАЯ ДИСЦИПЛИНА До конца 20-х годов прошлого столетия евклидова геометрия казалась незыблемой и единственной теорией пространства. В 1829 г. Н.И.Лобачевский опубликовал статью «О началах геометрии». В этой статье, так же как и в письмо молодого венгерского математика Я.Больяи, переданном К.Гауссу, утверждалось, что возможно построение непротиворечивой геометрии, не содержащей известный пятый постулат евклидовой геометрии. Этот постулат, гласящий, что через точку, лежащую вне данной прямой, можно провести одну и только одну прямую, параллельную данной, казался наиболее уязвимым (или наименее очевидным) априорным требованием евклидовой геометрии. Однако попытки вывести его из других аксиом оканчивались всегда неудачей. Поэтому был выбран другой путь — построение геометрии, основанной на всех аксиомах и постулатах Евклида, но в которой был заменен пятый постулат о параллельных: через одну точку можно провести либо бесконечное множество прямых, параллельных данной, либо ни одной. Кажется не лишенным интереса следующий вопрос: почему в течение тысячелетий геометрия Евклида сохранялась в первозданной форме, а затем почти одновременно три человека подвергли ревизии одно из основных ее положений? Разумеется, на этот вопрос нет однозначного ответа. Однако разумно допустить, что подобное совпадение не случайно. В ревизии геометрии свою роль сыграл психологический климат, характерный для общественной жизни того времени, явившийся следствием происшедших революционных потрясений и обусловивший стремление к критическому пересмотру канонизированных учений. Даже библейские догматы, освященные тысячелетней верой и поддерживавшиеся авторитарностью церкви, подверглись критическому анализу (Б.Спиноза). Лишь геометрия Евклида оставалась каноническим учением, но, наконец, наступила и ее очередь. Необходимо подчеркнуть важное обстоятельство. Отрицание пятого постулата отнюдь не означает отрицания всей Евклидовой геометрии. Все аксиомы его геометрии и сам дух этой науки сохранились. Но отрицание даже одного утверждения Евклида имело далеко идущие последствия: возникла мысль, что геометрия Евклида не единственное и не последнее слово в геометрии. А такая мысль могла быть расценена в то время не иначе, как ересь. (Известно, что Гаусс не опубликовал своих исследований по основам геометрии, опасаясь непонимания со стороны своих коллег.) Исключительно важным следствием скепсиса в отношении пятого постулата является постановка вопроса о необходимости его экспериментальной проверки. Непосредственная его проверка весьма затруднительна. Представляется даже уместным употребить слово «невозможна». Дело в том, что если (как отмечалось ранее) нет экспериментального критерия (прямизны) линии, то еще более сложно реализовать эмпирически несколько прямых и убедиться, в отсутствии их пересечения на больших расстояниях. Однако пятый постулат о параллельных эквивалентен (в сочетании с другими аксиомами евклидовой геометрии) утверждению, которое в принципе подвергается непосредственной проверке. согласно этому утверждению сумма углов треугольника равна ?. Измерение углов — операция весьма разработанная, и поэтому проверку этого положения можно проделать с относительно хорошей точностью. Уже в первых работах по неевклидовой геометрии было продемонстрировано, что отклонение суммы углов треугольника от ? (при отрицании постулата о параллельных) пропорционально площади треугольника. Поэтому казалось, что если провести измерения углов достаточно большого треугольника, то нетрудно проверить истинность (или ложность) пятого постулата. К сожалению, такой оптимистический вывод необоснован. Истоки трудностей предложенного метода проверки коренятся в принципиальной неопределенности термина «большое само по себе». В точных науках имеет смысл лишь утверждение: «большое относительно чего-то». В упомянутом же выше утверждении отсутствует именно эталон, который вдохнул бы полноценное содержание в утверждение о сумме углов треугольника. Лобачевский и Гаусс (независимо) в своих попытках проверить евклидову геометрию, по-видимому, исходили из убеждения, продиктованного античной философией: «человек мера всех вещей». Поэтому казалось, что достаточно выбрать треугольник со сторонами, существенно превышающими размеры человека. Например, Гаусс измерил сумму углов треугольника со сторонами, во много раз (10**5) превышающими размеры человека. В результате измерений оказалось, что в пределах экспериментальных ошибок сумма углов треугольника равна ?. Следует четко понимать, что в экспериментальном подходе в проверку пятого постулата «нет» и «да» весьма неэквивалентны. Метод, основанный на измерении суммы углов треугольника, может продемонстрировать отклонение от евклидовой геометрии, но не может доказать ее абсолютную справедливость. Действительно. какой бы треугольник в пределах наблюдаемой части Вселенной мы ни использовали в качестве образца, всегда можно утверждать, что его площадь мала, а точность наших приборов недостаточна для обнаружения отклонений от евклидовой геометрии. Все же известная польза от опытов Гаусса — Лобачевского (или аналогичных экспериментов) существует: если и есть отклонения от евклидовой геометрии, то они малы. Это вывод верен по крайней мере для масштабов, существенно превышающих привычные земные расстояния. Итак, с одной стороны, евклидовость пространства допускает опытную проверку. В другом аспекте — евклидова геометрия как логическая система аксиом и теорем является лишь одной из возможностей. В дальнейшем мы продемонстрируем, что таких возможностей много, существенно больше, чем полагали основоположники неевклидовой геометрии. Тем не менее геометрия нашего пространства евклидова или почти евклидова. Почему природа выбрала этот вариант геометрии? На этот вопрос мы попытаемся ответить в гл.3. Здесь же мы ограничимся замечанием, что среди всех логически замкнутых геометрий система Евклида является наиболее простой. Представляется, что, помимо простоты, эта геометрия также и наиболее естественна. Впрочем, подобное суждение лишь отражает субъективное мнение автора. Для иллюстрации идеи неевклидовости пространства полезно привести достаточно простой пример. Пусть пространством является поверхность обычной двумерной сферы. Отвлечемся прежде всего от привычного образа сферы, вложенной в видимое трехмерное пространство, полагая сферу самостоятельным автономным объектом. Будем полагать, что «прямые» в таком сферическом пространстве — кратчайшие расстояния между двумя заданными точками на сфере, т. е. дуги большого круга. Положим, что бесконечным прямым в евклидовом пространстве соответствуют окружности на сфере. Здесь правильно будет говорить именно о соответствии, а не о тождестве, поскольку окружность на сфере обладает лишь одним свойством евклидовой прямой — отсутствием границ, но не обладает другим ее свойством — бесконечной протяженностью. Окружность на сфере безгранична, но конечна. Нетрудно, далее, убедиться, что через любую точку сферы, не находящуюся на данном большом круге, нельзя провести большой круг, не пересекающий данный, т. е. «параллельную». Иначе говоря, все «прямые» пересекаются. Отметим также и другую важную особенность сферической геометрии. Если вырезать из сферы достаточно малую площадку, то геометрия будет имитироваться геометрией Евклида. Здесь полезно подчеркнуть, что подобный прием — вычленение из более сложной геометрии простейшей (в данном случае геометрии Евклида) с помощью выделения малой части полного пространства (здесь — сферы) — прием весьма распространенный и мы далее столкнемся с ним не раз. После открытия одного варианта неевклидовой геометрии в последующем своем развитии геометрия как ветвь математики прошла весьма значительный путь. Были развиты многие другие неевклидовы геометрии (некоторые из них рассматриваются далее в разд. 6 и 7 этой главы). В подобной эволюции существенную роль сыграло внедрение в геометрию аналитических методов. По существу, геометрия слилась с алгеброй (точнее, с математическим анализом), оставив в своем арсенале лишь одну (хотя и важную) привилегию определенную форму мышления, в которой большую роль играют образность и наглядность. 3. ИДЕАЛИЗАЦИЯ И ПРИБЛИЖЕНИЕ Ранее мы упоминали о некоторой неопределенности в основных понятиях геометрии: точка, линия и т. д. Превосходной иллюстрацией такой неопределенности является геометрический принцип двойственности. Суть этого принципа заключается в том, что если поменять местами наглядные образы точки и прямой, то в аксиомах и теоремах геометрии почти ничего не изменится. Покажем некоторые простейшие примеры проявления принципа двойственности, для чего вначале приведем стандартные положения геометрии, а затем попросим читателя сделать усилие и в соответствующих фигурах совершить взаимную замену точек и прямых.
Второе положение эквивалентно первому в следующем смысле: нужно слово «провести» заменить на «содержит». Такая замена имеет лишь семантический характер.
Ясно, что и это положение сохраняет свою силу при взаимной замене точек и прямых.
Легко проверить, что при взаимной замене точек и прямых получается привычный треугольник. Число иллюстраций принципа двойственности можно существенно увеличить, он пронизывает всю геометрию. Отсюда можно сделать вывод: интуитивные понятия «точки» и «прямой» в значительной степени условны.[1] Из этого вывода следует естественный вопрос: как самая точная наука — математика (точнее, одна из ее областей геометрия) может базироваться на системе не вполне определенных понятий? Более того, при взаимной замене ее основных определений большинство выводов сохраняют свою силу. Ответ на поставленный вопрос несложен, пока он относится к чистой математике (а речь идет именно об этом направлении). Высшим критерием математической истины является логическая замкнутость, непротиворечивость системы аксиом и следующих из нее теорем. Чеканная логика — основной критерий истины в математике. Соответствие данной математической конструкции эмпирическим наблюдениям или простым интуитивным представлениям является критерием менее важным, чем логическая завершенность. Крупнейший математик Д.Гильберт посвятил значительную. часть своей жизни совершенствованию аксиоматики геометрии. Ему принадлежит известное основополагающее определение:
Приведенная цитата лаконично подытоживает (в определенном смысле) исследования центральных понятий геометрии. Основные ее понятия — идеализированные объекты, не обязательно связанные с конкретной реальностью или интуитивными представлениями. «Точкой» может быть идеализированный объект, лишенный протяженности во всех измерениях или в части измерений (линия или плоскость). Нулевые размеры точки не мешают ей обладать внутренней структурой и т. д. Важны лишь отношения между геометрическими объектами, которые должны быть определены очень точно и непротиворечиво. Этот критерий и ограничивает произвол в выборе основных объектов. Подобную ситуацию можно назвать сверхабстракцией или сверхидеализацией. Количественная мера подобной идеализации не обязательна. Здесь нужно особо подчеркнуть различие в отношении к термину «идеализация» со стороны математиков и физиков. Идеализация — прием, типичный для математики. Иногда он даже не оговаривается. Однако идеализация — редкий гость в физических концепциях. И хотя этот термин иногда встречается в физических работах, он должен обязательно сопровождаться количественным критерием этой идеализации. Должен! Однако зачастую этот критерий не приводится. И тогда читатель подвергается искушению отнести подобную работу всего лишь к интересным математическим упражнениям. Иногда подобные работы сопровождаются солидными математическими узорами, однако подобное рукоделие не всегда поддается физической расшифровке. Кардинальное расхождение в оценке термина «идеализация» со стороны физиков и математиков вполне закономерно. Оно обусловлено разницей в высших критериях «истины» этих дисциплин. Для математики важнейший критерий — логическая завершенность, для физики же — опыт. Обычно лишь экспериментальные исследования могут подтвердить или опровергнуть правильность физических построений. Разумеется, такая категоричность вывода не исключает более простую возможность: данная теория неверна вследствие противоречия с общепризнанными физическими принципами, логических неувязок, математических ошибок и т. д. Однако для новой, пусть самой красивой и формально безупречной теории высший критерий опыт. Поэтому физики предпочитают употреблять термин «приближение». Полезно привести пример экспериментального выбора между двумя одинаково красивыми и логически безупречными теориями, объединяющими электромагнитное и слабое взаимодействия На рубеже 60 — 70-х годов были предложены две альтернативные теории электрослабого взаимодействия. В рамках одного варианта теории оно осуществлялось посредством двух +заряженных тяжелых частиц (W|| — бозонов). В соответствии с другой теорией, помимо заряженных частиц — переносчиков взаимодействия, должен был существовать также и тяжелый 0 +нейтральный Z| — бозон примерно с той же массой, что W|| — бозоны. Опыт: существование нейтральных токов (конкретно обнаружение рассеяния нейтрино на электронах) и, наконец, открытие на ускорителе нового поколения всех трех типов ± 0 частиц (W||- и Z| — бозонов) подтвердили правильность второго варианта теории электрослабого взаимодействия, который называется теорией Глешоу — Вайнберга — Салама. До названных экспериментов логический анализ не мог произвести выбор между двумя вариантами теории электрослабого взаимодействия. Различие же высших критериев в обеих точных науках влечет за собой и расхождение в требованиях точности определения основных объектов, с которыми они оперируют. Для краткости аргументами в пользу этого тезиса целесообразно опереться на авторитеты. Л.Д.Ландау и Е.М.Лифшиц начинают свой курс теоретической физики с определения материальной точки. Под этим названием понимают тело, размерами которого можно пренебречь при описании его движения. В этом определении центральное место занимает физический критерий реализации «точечности» объекта. Вероятно, в физике следовало бы все-таки во избежание путаницы устранить термин «идеализация», заменив его на «приближение». Р.Фейнман (на наш взгляд, абсолютно правильно) утверждал:
В физических книгах и работах обычно определяют некий малый параметр, которым при четко определенных условиях можно пренебречь. Как правило, приближение выражается в форме неравенства, когда безразмерная величина, определяющая приближение, становится малой сравнительно с единицей. Приведем прекрасный пример приближенности теории. Классическая механика Ньютона верна, если выполняются два условия: v/c << 1 и HP/S << 1 (c — скорость света, v скорость тела, HP — постоянная Планка, S — действие). Если же v/c ~ 1, то следует учитывать релятивистские поправки, обусловленные теорией относительности. Если HP/S ~ 1, то вступают в силу законы квантовой механики. Напомним, например, что в соответствии с теорией относительности масса M изолированной системы зависит от ее скорости: M = M| [1-(v/c)**2]**(1/2), где M| — так называемая масса покоя. При v/c << 1, M ? M| ~- const(v) в соответствии с ньютоновской механикой. Итак, основа математики — идеализация, в физике царствует приближение. Несомненно, что сейчас такое деление несколько условно. Дело заключалось в том, что само понятие геометрии, предмета геометрии, несколько размылось. Вероятно, этому расширенному толкованию геометрии следовало бы посвятить специальную книгу и, быть может, не одну. Здесь мы ограничимся кратким изложением авторской точки зрения на предмет. Известный субъективизм в обсуждении основ геометрии, по-видимому, знамение времени, обусловленное быстро возрастающей ролью геометрии в физике. Происходит взаимообогащение и взаимопроникновение обеих наук, что и вызывает определенное смещение основных физико-математических понятий. Это смещение не успевает отслеживаться терминологией. В старые термины вкладывается новое содержание. Отражением подобной неустойчивости или неадекватности основных терминов и их содержания является различие их определения даже в современных школьных учебниках, написанных разными авторами. По нашему мнению, сейчас сосуществуют три несколько отличающиеся друг от друга геометрии. Первая — математическая геометрия, предмет которой исследование свойств пространств безотносительно к физической реальности. Вторую можно условно назвать физико-математической геометрией. В ее рамках геометрические методы используются для устранения незамкнутости, непоследовательности уравнений, описывающих квантовую теорию поля. Физико-математическая геометрия непосредственно не соприкасается с физической реальностью, однако имеет существенное значение для построения единой последовательной картины мира. И наконец, последняя — физическая геометрия, которая является фоном для эволюции материи и ее непосредственного описания. Автор отлично понимает схематичность подобной классификации, однако едва ли уместно давать в данной книге более развернутую картину многих граней современной геометрии. В заключение следует подчеркнуть, что автор — физик и, по возможности, придерживается круга понятий и терминов физической геометрии. 4. СУЩЕСТВУЕТ ЛИ ЕДИНСТВЕННАЯ ФИЗИЧЕСКАЯ ГЕОМЕТРИЯ? На заре нашего столетия А.Пуанкаре высказал мысль, которая сделалась впоследствии почти нарицательной: опыт не определяет порознь физику и геометрию. Он подтверждает суммарно физику и геометрию в их взаимосвязи. Но если наблюдения измеряют лишь сумму, то это означает, что каждое из слагаемых имеет определенный произвол. Наиболее ревностные последователи Пуанкаре пошли еще дальше, полагая, что для описания физической реальности можно выбрать любую геометрию, а к ней уже «подогнать» соответствующую физику так, чтобы эмпирическая «сумма» геометрия+физика оставалась неизменной. Другими словами: выбор физической геометрии произволен и определяется вкусом и удобством вычислений. Абсолютная физическая геометрия отсутствует. Правилен ли этот тезис? По нашему мнению, полный ответ имеет сложную диалектическую форму. Однако нельзя согласиться с полной релятивизацией физической геометрии. Существует, по-видимому, единственная геометрия (или, точнее, ограниченный класс геометрий), отвечающая полному набору наблюдений. Эта геометрия имеет сложный характер, и ее анализу посвящены две следующие главы книги. Здесь же следует подчеркнуть, что речь идет о полном наборе экспериментальных фактов и основополагающих физических принципах, а не о единичных опытных данных, интерпретировать которые без труда можно на основе произвольной геометрии. Выступая против релятивизации геометрии для описания физики, автор отдает себе отчет об ответственности оппонента такому титану, как А.Пуанкаре. Но во-первых, подобная оппозиция направлена прежде всего против чересчур ревностных апологетов идеи релятивизации, а во-вторых, автор имеет мощного союзника — время. С тех пор, как Пуанкаре высказывал свои идеи, прошло около 80 лет, и физика изменила свой лик. Прежде всего, на наш взгляд, существенно углубилось понимание основного объекта — точки, адекватного общим физическим принципам. И главное: колоссально возрос эмпирический материал, сузивший произвол в выборе геометрии. Иначе говоря, нам представляется, что существует естественный (хотя и сложный) класс геометрий, в рамках которого реализуется эмпирическая основа физики — динамики. Чтобы иллюстрировать (весьма предварительно, поскольку этому предмету посвящена вся книга) предопределенность геометрии эмпирическим наблюдениями, мы рассмотрим простейший пример. Допустим вначале, что распространение света или радиоволн в межпланетной и межзвездной средах соответствует прямой в смысле евклидовой геометрии. Параметры межпланетной и межзвездной сред известны, и можно показать, что они практически не влияют на направление распространения света или радиоволн достаточно высокой частоты. Тогда различными методами можно весьма точно измерять расстояния до солнца, планет или многих звезд в Галактике. Определяя затем угол между направлениями от Земли до двух космических объектов (например, Солнца и одной из планет), можно вычислить сумму углов треугольника, образованного Землей и этими двумя объектами. И всегда, независимо от природы объектов, сумма углов оказывается в пределах небольших экспериментальных ошибок равной ?.` Таким образом, можно было бы сделать вывод, что по крайней мере в пределах Галактики ее геометрия — евклидова. Этот вывод правилен, но с одной оговоркой, которую может использовать верный последователь Пуанкаре. В этих рассуждениях допускалось, что направление распространения фотонов в пустоте совпадает с прямой линией. На чем основано это утверждение? Может быть, фотоны движутся по кривой, а само пространство также кривое и обе кривизны взаимно компенсируют друг друга, так что в результате получается мнимое доказательство торжества евклидовой геометрии?[4] Ответ на это возражение базируется на анализе совокупности физических фактов. Так, было проделано множество опытов по определению параллаксов различных космических объектов, расположенных на различных расстояниях от Земли. Всегда сумма углов оказывалась равной ?. Причем непосредственное изучение геометрии по свойствам космических треугольников далеко не единственный метод определения характеристик пространства. В физике подробно изучены различные взаимодействия: электромагнитное (в макро- и микроскопических проявлениях) и микроскопические (слабое и сильное). Электромагнитное взаимодействие исследовалось в огромных интервалах расстояний: 10**-16 — 10**13 см. Самые малые расстояния изучались с привлечением весьма тонких методов физики элементарных частиц. В частности, измерялись рассеяния электронов на электронах и электронов на позитронах. Ценность этих опытов в том, что в них проявляется практически только одно взаимодействие — электромагнитное. В этих и аналогичных опытах с очень большой точностью (иногда вплоть до десятого знака) было продемонстрировано, что законы электродинамики справедливы. Электродинамика на самых больших расстояниях проверялась с меньшей точностью (радиолокация Солнца и планет, электродинамика Солнца). Разумеется, с существенно большей точностью электродинамика проверена в масштабах Земли (~10**9 см). Законы микроскопических взаимодействий (слабого и сильного) на малых расстояниях (10**-16 — 10**-13 см) также хорошо (хотя и с меньшей точностью — до второго — пятого знака) подтверждены опытом. Когда здесь упоминались законы взаимодействий, то они, разумеется, понимались как совокупность динамических уравнений и геометрии пространства, в котором существуют материальные точки. Во всех упомянутых опытах делалось одно априорное предположение: пространство евклидово. Вероятно, можно для интерпретации отдельных опытов придумать объяснение на основе геометрий, отличных от евклидовой, но допущение, что вся огромная совокупность экспериментов объясняется на базе неевклидовой геометрии, представляется невероятной. В заключение отметим, что современные представления о структуре Метагалактики (Вселенной) также свидетельствуют, что в ее пределах (размер ~10**28 см) пространство евклидово или близко к нему (см. разд. 6 и 8 гл. 3). Таким образом, весь исключительно богатый набор экспериментальных фактов согласуется с допущением: в интервале расстояний 10**-16 — 10**28 см физическая геометрия близка или тождественна евклидовой геометрии трехмерного пространства. Нам представляется этот факт доказательством единственности геометрии в этом интервале расстояний. Однако с точки зрения чистой логики нельзя отвергнуть и другой тезис: нет доказательств, что нельзя построить всю физику на основе геометрии, существенно отличной от трехмерной евклидовой. Да, действительно строгого логического доказательства такого утверждения нет. Однако пока не сделаны хотя бы попытки построить физики в существенно измененном пространстве, все утверждения о произволе геометрии имеют абстрактный, а не физический характер. Оговоримся в заключение, что под существенным изменением геометрии мы понимаем кардинальную вариацию ее параметров, например размерности. В дальнейшем мы не раз будем останавливаться на связи геометрии (в частности, размерности) и динамики. Далее будет продемонстрировано, что один из основных параметров пространства — его размерность предопределяет в значительной степени динамику. И еще одно замечание. Раздельный анализ геометрии и динамики возможен лишь для трех взаимодействий: электромагнитного, слабого и сильного. В рамках эйнштейновской теории гравитации динамика и геометрия сливаются в единое целое, и тогда простота сделанных выше заключений утрачивается. К этому усложненному пониманию взаимосвязи геометрии и физики мы вернемся позже. 5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Аналитическая геометрия сводит понятие точки к набору чисел — координат. Координаты — расстояния до некоторой системы линий, называемых осями координат. Простейший способ системы координат — набор взаимно ортогональных осей — система декартовых координат (названная в честь основателя аналитической геометрии Р.Декарта). Полезно перечислить крупнейшие достижения аналитической геометрии. Существенно уточнено понятие точки (набор чисел). Появилась возможность оперировать с пространствами любой целочисленной размерности. В пространстве N измерений точку определяют N чисел. Значение этого достижения аналитической геометрии в полной мере начали осознаваться сравнительно недавно. Лишь основываясь на ее методах (или модификациях этих методов), можно анализировать многомерные пространства, которые казались математической экзотикой, а сейчас приобрели большую актуальность. Преимущества аналитических методов при отображении многомерных пространств проявляются в отсутствии необходимости наглядно себе их представлять или моделировать реально в нашем пространстве — особенностях, обусловленных в первую очередь нашей психологической ограниченностью. Человек привычно представляет фигуры с размерностью N?3, но не способен вообразить объект большей размерности. Для аналитической же геометрии размерность N=3 лишь одна из бесконечного набора возможностей (1?N= При операциях в пространстве N измерений следует определить N координатных осей. И наконец, еще одно преимущество аналитической геометрии. Она сильно упрощает представления о геометрических образах, заменяя их (зачастую весьма простыми) уравнениями. Например, в декартовых координатах уравнение прямой: y=ax+b (a, b=const); уравнение окружности: (x-a)**2+(y-b)**2=c**2 и т. д. Нетрудно описать, реализовать евклидово пространство в рамках аналитической геометрии. Евклидово пространство можно определить как бесконечное, изотропное и однородное пространство. Любые две его точки полностью эквивалентны. Поместим в любой точке пространства три источника световых лучей, распространяющихся во взаимно перпендикулярных направлениях. Эти лучи образуют координатные оси Ox, Oy, Oz. Перенесем источники света вдоль одной из осей, например оси z. Новые оси O'x', O'y' будут параллельны Ox и Oy. Длины осей бесконечны, поэтому перенесение источников из точки O в точку O' не изменит геометрическую ситуацию. Аналогичное рассуждение можно провести и вращая одновременно все источники в точке на один и тот же угол. Неизменность свойств пространства при перемещениях и вращении отражает основные свойства евклидова пространства — однородность и изотропию. При указанных выше операциях сохранят свою форму и основные уравнения кривых. Какова цена, которую следует уплатить за все преимущества аналитической геометрии? Используя ее методы, мы утрачиваем наглядность, привычную нам с детства. Аналитическая геометрия невольно порождает ностальгию по безвозвратно ушедшим школьным годам. 6. ГЕОМЕТРИЯ В ЦЕЛОМ И ГЕОМЕТРИЯ В МАЛОМ Наши привычные представления о геометрических фигурах основаны на образе, вписанном, вложенном в евклидово пространство. Да и сама евклидова геометрия широко использует образы объемов или поверхностей, вложенных в евклидово пространство. Для общего представления о фигурах подобная картина вполне достаточна. Однако такие образные представления являются в некотором смысле атавизмом, оставшимся в наследие от убеждения в единственности евклидовой геометрии, понимаемой как ветвь математики. Как только сформировались идеи неевклидовой геометрии, возникла необходимость описания поверхностей-пространств любой размерности независимо от фона — пространства, куда вкладываются эти поверхности-пространства. Последние в такой постановке задачи выступают, как носители самостоятельной автономной геометрии, не связанные с осями координат, вписанными в глобальное евклидово пространство-фон. Подобный подход был в прошлом столетии предложен К.Гауссом и Б.Риманом и является основой дифференциальной геометрии. Это сравнительно сложная математическая дисциплина, и мы здесь ограничимся качественными иллюстрациями основных ее идей, адресуя желающих познакомиться с ней детальнее к соответствующим учебникам и монографиям.[5] Чтобы понять основные идеи геометрии поверхностей, обратимся вначале к привычным образам евклидовой плоскости двумерного пространства и двумерной сферы, рассматриваемой как автономное пространство. Известно, что основным свойством евклидова пространства является изотропия и однородность — полная эквивалентность его точек. Однако этого фундаментального свойства евклидова пространства недостаточно для его однозначного определения. Утверждение, что однородное и изотропное пространство есть пространство Евклида, не точно, поскольку этому свойству однородности и изотропии удовлетворяет также и сфера: все ее точки также эквивалентны относительно поворотов осей координат и их трансляции. Иначе говоря, глобальные относительно этих операций свойства обоих пространств одинаковы. Чтобы их количественно отличить, нужно ввести локальные характеристика, характеризующие различие плоского и сферического пространств. Иначе говоря, нужно определить величину, характеризующую кривизну сферической поверхности сравнительно с евклидовым пространством. В рамках глобальной неевклидовой геометрии (как мы отмечали ранее) отличие геометрии от евклидовой характеризуется отклонением суммы углов треугольника от ? или (что то же самое) отклонением от теоремы Пифагора. Рассмотрим теперь малые участки обеих пространств. Для них квадрат интервала ds**2 между двумя достаточно близкими точками представляется выражениями: ds**2=dx**2 + dy**2 (плоскость) (1) ds**2=r**2 sin**2 ? d FI + r**2 d FI**2 (сфера) (2) r, ?, FI — соответственно радиус, полярный и азимутальные углы. Однако в косоугольных координатах квадрат интервала и плоскости имеет вид s**2=dx**2 + dy**2 + 2 dx dy cos ALPHA Хотя численное значение интервала остается неизменным (квадрат длины вектора — инвариант относительно замены системы координат), тем не менее форма (3) имеет более сложный вид, чем соотношение (1). Однако выражения (1) и (3) для квадрата интервала имеют лишь разные формы. Различие форм отражает разницу в выборе системы координат. Изменяя систему отсчета, можно во всей евклидовой плоскости интервал ds**2 свести к простой форме (1). С выражением (2) интервала на сфере дело обстоит совсем по-другому. Форму (2) никаким преобразованием координат нельзя свести к простому соотношению (1) на всей сфере одновременно. Такую процедуру можно проделать лишь локально, выбирая направление на маленьком участке сферы так, чтобы ?=?/2. Однако при таком выборе система координат фиксируется применительно у этому участку сферы. Поэтому глобально для всей сферы соотношения (2) и (1) различаются, что и отражает неевклидовость сферы. Локально — в малом сферу можно аппроксимировать частью плоскости; глобально — в целом — невозможно. Представление участка сферы плоскостью довольно тривиальная процедура. Любую малую окрестность достаточно гладкой поверхности можно в первом приближении аппроксимировать плоскостью по аналогии с тем, что отрезок ds непрерывной кривой, описываемой дифференцируемой функцией f(x), представляется в окрестности точки x отрезком прямой длины ds={[f'(x)]**2+1}**(1/2) dx. (4) Малый участок достаточно гладкой поверхности обладает следующими свойствами: 1. В малом однозначно определяется прямая — кратчайшее расстояние между двумя точками. 2. В малом определяется однозначно вектор и скалярное произведение двух векторов. 3. Скалярное произведение двух векторов однозначно определяет свойства пространства. Инвариантность скалярного произведения относительно вращений и трансляций определяет евклидово пространство, что и отражено в аналоге равенства (3): ds**2=dx| dx|=dx|**2 + dx|**2 + 2 dx| dx| cos ALPHA (5) 1 2 1 2 1 2 Это рассуждение — геометрический аналог аналитического соотношения (4). Выбор интервала ds**2 в виде квадратичного выражения принципиален. Квадрат — наименьшая степень, при которой интервал сохраняет свою величину (инвариантен) относительно весьма широкого класса преобразований. В принципе можно было бы опираться на выражения интервалов через многочлены более высокой четной степени, однако, как оказалось, подобная усложненная геометрия практически современной физике не нужна. Итак, в дифференциальной геометрии фундаментальную роль играет интервал и его инвариантность относительно широкого класса преобразований. Выражение (3) записывается обычно в следующей форме: ds**2 = g|| dx| dx|, (6) ik i k где наличие общих индексов означает суммирование по всем возможным их значениям. Для двумерной поверхности i,k=1,2; для трехмерной — i,k = 1,2,3 и т. д. Величины g|| образуют метрический тензор и ik представляются квадратной таблицей (матрицей). Вследствие симметрии (g||=g||) метрический тензор в общем случае ik ki характеризуется N(N+1)/2 компонентами. Для пространства Евклида все компоненты метрического тензора можно привести к простейшему виду во всех точках пространства: g||=0, если i\=k; g||=1, если i=k. Это правило ik ik верно лишь для пространства Евклида. Выражение (6) является алгебраическим представлением произвольной достаточно гладкой поверхности. Можно дать и наглядное, более геометрическое отображение ее свойств. Это отображение основано на упомянутом выше положении, доказанном еще Гауссом, о том, что в малом отклонение геометрии от евклидовой пропорционально некой величине, называемой кривизной. Несколько огрубленно можно сказать, что кривизна (количественная мера отклонения поверхности от евклидовой) оптимальная аппроксимация малого участка поверхности набором окружностей разных радиусов. Число этих окружностей растет с ростом размерности поверхности. Однако существуют симметричные поверхности — пространства, для которых кривизна характеризуется меньшим числом компонент. Так, для сферы кривизна R — однокомпонентная величина. R~1/r**2, (7) где R — радиус сферы. На примере сферы становится ясным, что с уменьшением кривизны или увеличением размеров поверхность локально приближается к евклидову пространству. Такое приближение реализуется и в более общем случае, когда все компоненты кривизны уменьшаются. Сфера не является единственной поверхностью с постоянной кривизной. Пример другой такой поверхности пространство Лобачевского, образованное вращением гиперболы. Существует, однако, существенная разница между сферой и пространством Лобачевского. Кривизна сферы положительна, кривизна пространства Лобачевского имеет отрицательный знак. Пространство Евклида — единственное, характеризуемое постоянной, но нулевой кривизной. И еще одно замечание. Ранее отмечалось, что характеристика неевклидовости двумерных плоскостей отклонение суммы углов треугольника от ?. Говоря о проведении треугольника на произвольной поверхности, мы молчаливо подразумевали возможность единственного проведения прямых на поверхности в смысле Евклида (прямая — кратчайшее расстояние). Однако в общем случае между двумя точками поверхности можно провести несколько кратчайших расстояний. Эта неоднозначность устраняется, если выбирается достаточно малый участок поверхности. Отметим (ввиду важности утверждения) снова, что в малом участке можно определить евклидову систему отсчета. В малом для гладких поверхностей имеет смысл понятие вектора и векторного произведения, инвариантного относительно трансляций и поворотов в пределах малого участка. Но в отличие от евклидова пространства, в котором существует глобальная система координат, обладающая подобными свойствами, в общем случае существование евклидовой системы возможно лишь в малом. По существу это утверждение имеет простой наглядный (геометрический) смысл. Гладкую поверхность можно аппроксимировать бесконечным набором примыкающих малых плоскостей, расположенных друг относительно друга под определенными углами. Характеристики взаиморасположения микроплоскостей кривизны или связности понятия, которые целесообразно рассмотреть в следующем разделе. Последние рассуждения прямо относились к двумерным поверхностям. Однако в рамках аналитической или дифференциальной геометрии, когда свойства пространств определяются числами (координатами или величинами компонент метрического тензора или кривизны), можно с равным успехом проводить анализ поверхностей любой целочисленной размерности. Методы аналитической и дифференциальной геометрии позволяют представить геометрические фигуры в безликих арифметических терминах, и нет нужды «воображать» сами поверхности. Возможность оперировать с поверхностями (пространствами) произвольной размерности исключительно важна для понимания свойств и характеристик физического пространства (об этом речь пойдет в следующих главах). В заключение еще одно замечание. Утверждение, что локально поверхность эквивалентна евклидову пространству, означает, что в любой точке интервал можно привести к виду N — ds**2 = > dx|**2 (8) — i i=1 Такие поверхности называются римановыми и обладают свойством ds**2 > 0 (положительно определенная матрица). Теория относительности внесла коррективы в это определение. Эта теория выдвинула идею нового типа пространств — пространств Минковского когда интервал ds**2 может иметь оба знака (ds**2 ? 0 или ds**2 ? 0), метрика таких пространств называется индефинитной, а сами пространства псевдоевклидовыми. Метрика псевдоевклидовых пространств размерности N имеет вид: N| N| 1 2 - — ds**2 = > dx|**2 — > dx|**2 (9) — i — k i=1 k=1 причем N|+N|=N. Обобщением псевдоевклидова пространства 1 2 является псевдориманово пространство, которое локально представляется псевдоевклидовой метрикой. 7. РАССЛОЕННЫЕ ПРОСТРАНСТВА Уже упоминалось ранее, что точка иногда определяется как геометрический объект, не имеющий протяженности. Поэтому напрашивался вывод, что точка в таком понимании не имеет структуры. Однако критический анализ основных понятий геометрии, а также внутренние, имманентные законы развития дифференциальной геометрии стимулировали создание и развитие нового математического образа — расслоенного пространства. Первые работы, в которых формировались основные понятия расслоенных пространств и их связи с другими разделами математики, относятся к 30 — 50-м годам и принадлежат выдающимся математикам: Э.Картану, Х.Уитни, Ш.Эресману, Ш.Черну. Вначале казалось, что этой новой ветви математики уготована участь многих ее разделов: служить красивой абстракцией, не связанной с физической реальностью. Основания для подобных прогнозов были. Фундаментальное понятие точки у расслоенных пространств отличалось от интуитивного образа бесструктурной точки. Однако эволюция физики, и в первую очередь квантовой теории поля, физики элементарных частиц и космологии, привела к сближению представлений о точках в физике и расслоенных пространствах. Постепенно начал вырисовываться абрис синтеза фундаментальной физики и геометрии на базе расслоенных пространств. По нашему мнению, можно высказать и более сильное утверждение: существует «истинное» физическое пространство, которое реализуется в терминах расслоенных пространств. Если такая несколько претенциозная формулировка выглядит экстремистской, то более ограниченное утверждение: объединенная теория взаимодействий допускает геометрическую интерпретацию на базы расслоенных пространств — кажется бесспорным. Необходимость такого заключения оказалась для физики несколько неожиданной. Даже творцы теории элементарных частиц оказались неподготовленными к вторжению математики расслоенных пространств в физику. В этом аспекте характерен диалог физика Ч.Янга с одним из основоположников геометрии расслоенных пространств Ш.Черном. Янг: «Это (расслоенные пространства. — И.Р.) приводит в трепет и изумление, поскольку вы, математики, выдумали эти понятия из ничего». Черн: «Нет, нет! Эти понятия вовсе не выдуманы. Они существуют на самом деле».' ------------------------------' Янг Ч. Эйнштейн и физика второй половины XX века // УФН. 1980. Т.132. С.174. О расслоенных пространствах см. также ст.: Даниэль С., Виалле М. Геометрический подход к калибровочным теориям типа Янга — Миллса // УФН, 1982. Т.136. С. 377–420; Бернстейн Г., Филлипс Э. Расслоения и квантовая теория // УФН. 1982. Т.136. С. 665–692. ------------------------------ Этот диалог весьма примечателен. Математики часто строят конструкции, кажущиеся физикам абстрактными, не связанными с физическими ценностями. Разные подходы математиков и физиков приводят к недооценке адекватности некоторых «абстрактных» математических методов физическим проблемам. В результате эти методы заново переоткрываются физиками. Пожалуй, классический пример подобной ситуации переоткрытие В.Гейзенбергом в 1925 г. матричного исчисления, которое он использовал для создания квантовой механики. Лишь после бесед с М.Борном он узнал, что теория матриц — хорошо разработанный раздел математики практически не используемый физиками. После этих предварительных замечаний целесообразно перейти к изложению основных идей геометрии расслоенных пространств. Начнем с представления основных образов (картин) расслоенных пространств. Первый связан с обобщением понятия точки. Точка в расслоенном пространстве эквивалентна автономному пространству. Иначе говоря, можно наглядно представить, что точка в расслоенном пространстве эквивалентна точке в смысле Евклида (объект, лишенный протяжения), к которой «прикреплено» (или лучше: которой соответствует) свое пространство. Можно представить расслоенное пространство в целом. Оно представляет совокупность большого числа (как правило, бесконечного множества) пространств, из которых одно, называемое базой, играет особую роль. Каждая точка этого пространства взаимно однозначно связана со своим пространством, называемым слоем над базой. Каждой точке в базе соответствует свое пространство (слой), отражающий структуру точки. Приведем некоторые простейшие примеры расслоенных пространств. Пусть база — прямая, т. е. евклидово одномерное 1 пространство' R|. Каждой точке базы — прямой — соответствует 1 окружность S|, расположенная в плоскости, перпендикулярной базе, центром которой является данная точка базы. Радиусы всех окружностей одинаковы. Расслоенное пространство определено однозначно. В данном случае размерности слоев и базы одинаковы и равны 1. Полное расслоение пространства представляет цилиндр и его ось. ------------------------------' Символом R часто обозначают риманово пространство, частным случаем которого является пространство Евклида. Индекс вверху обозначает размерность пространства. Символ S 1 соответствует сферическим пространствам: S| — окружность, 2 S| — двумерная сфера и т. д. —---------------------------- Можно привести пример расслоенного пространства, в котором размерности базы и слоев различны. Пусть база 3 трехмерное евклидово пространство R|, а слои — двумерные 2 сферы S|. Подчеркнем принципиальную разницу между обоими примерами. В первом случае и слой и база — одномерные фигуры. Полное расслоенное пространство — фигура трехмерная (цилиндр+прямая), и ее нетрудно вообразить воочию. Второй пример расслоенного пространства не поддается такой наглядной интерпретации. Каждый его элемент — сфера с точкой базы в центре. Однако совокупное расслоенное пространство имеет пять измерений. Представление о нем как о множестве сфер, расположенных в трехмерном пространстве, неправильно. Слои-сферы находятся в дополнительных измерениях, и поэтому расслоенное пространство в целом нельзя изобразить адекватно на бумажном листе. Представление пространства доступно лишь с помощью аналитических методов. ?=РИС. 1 ?=РИС. 2 В простейшем случае точки базы и слоев — действительные числа. Можно представить, что пространство слоев состоит из точек — мнимых чисел. Например, можно представить себе слой в виде сферы, каждая точка которого — мнимое число. Приведем еще один пример. База — круг радиуса r (рис. 1). Над базой находится цилиндрический объем, ось которого проходит через центр базового круга перпендикулярно плоскости, в которой он расположен. В данном случае слоями являются прямые, расположенные внутри цилиндра, перпендикулярные основанию. Например, слою aa| соответствует 1 точка; слою bb| — точка B. 1 Во всех приведенных примерах все слои одинаковы. От замены одного слоя на другой геометрия расслоенного пространства не изменится. Такой простейший случай называется простым произведением пространства базы на пространство слоя. Например, первое из приведенных выше 1 1 2 2 пространств обозначается R| x S|; второе — R| x S| и т. д. Возникает вопрос: как математически определить те простейшие расслоения, о которых шла речь выше. До сих пор мы рассматривали примитивные расслоенные пространства простые произведения. Существуют и менее тривиальные произведения. Как уже упоминалось, наглядно можно представить лишь расслоенные пространства малой размерности (полная размерность N?3). 1 1 Вначале рассмотрим простейшее расслоение R| x S|. 1 Допустим, что слой — окружность S| — находится в плоскости, 1 перпендикулярной базе — прямой R|. Радиус всех слоев положим для простоты равным 1, что не уменьшит общности рассмотрения, поскольку единицы измерения — в ведомстве физики, а не математики. Положение радиус-вектора из любой 1 1 точки прямой R| в соответствующую точку окружности S| будем характеризовать углом ALPHA, отсчитываемым от некоторой 1 прямой, перпендикулярной базе R|. В простейшем случае интервал определяется соотношением ds**2 = dx**2 + d ALPHA**2. В более общем случае n-мерного n 1 евклидова пространства со слоем S| (R| x S|) метрику можно 1 записать в виде матрицы: ! SIGM|| 0! ! ik! g|| =!! (10) юv!! ! 0 1! i,k = 1,2….,n; ю, v = 1,2….,n+1=N; SIGM|| = 1 при i=k; ik n — SIGM|| = 0 при i ? k; ds**2 = > dx|**2 + d ALPHA**2. ik — i i=1 Такую простую форму интервал имеет при специальном выборе системы координат (смешанная система: n координат декартовы, а (n+1) — я описывается в одномерной сферической системе). Разумеется, в общем случае метрика имеет более сложный вид. Однако в одном важном для нас частном случае, 1 когда окружность S| описывается в комплексной плоскости, соотношение (10) сохраняется. Этот вывод следует из двух фактов, лежащих в основе теории комплексных чисел: iA 1) функция f(ALPHA) = e|| описывает в комплексной плоскости окружность с радиусом, равным единице, и 2) модуль функции * f(ALPHA) равен единице: f| (ALPHA) * f (ALPHA) = 1. Приведем пример нетривиального трехмерного расслоения. С этой целью рассмотрим аналог рис. 1. Рассмотрим вначале 1 простое произведение окружности S| на цилиндрическую поверхность, которую можно получить путем простого склеивания прямоугольной полоски бумаги так, чтобы краевые 1 1 точки A и B, A| и B| совпали (рис. 2,а). Однако можно полоску 1 перекрутить так, чтобы точка A совпала бы с точкой B|, а 1 точка B — с точкой A| (рис. 2,б). В результате получается поверхность, называемая листом Мёбиуса. Такая поверхность может быть совокупностью слоев над базой — окружностью. Однако ясно, что при перемещении вдоль окружности-базы слои утрачивают свое равноправие. Так, слой AB остался неизменным: он перпендикулярен плоскости, в которой находится окружность. Другие же слои повернулись на некоторый угол, который зависит от от расстояния от линии AB. В общем случае расслоенное пространство — сравнительно сложная конструкция. Мало задать пространство базы и пространство слоев. Нужно еще и зафиксировать отношения между ними. Идея определения этого отношения заимствована из дифференциальной геометрии, где эта идея — лишь одна из возможностей измерения отклонения пространства от евклидова. Для расслоенных пространств общего вида описанный ниже метод, пожалуй, основной. Ранее мы упоминали, что искривленное пространство характеризуется различными величинами: отклонением суммы углов треугольника от ? (неевклидовость), отличием метрики пространства от евклидовой метрики и, наконец, кривизной пространства. Однако существует сравнительно наглядная характеристика искривленности, называемая связностью. Для обычного (нерасслоенного) пространства связность определяется совокупностью углов между данным малым линейным элементом поверхности и всеми соседними малыми элементами. Чтобы сделать это наглядное определение математически более строгим, необходимо сформулировать общее правило параллельного переноса векторов. В евклидовой геометрии параллельный перенос отрезка прямой линии — стандартная операция с достаточно очевидным результатом. Если переносить этот отрезок параллельно самому себе вдоль замкнутого контура, то в результате полного обхода контура конечная прямая совпадет с первичной. Однако такой результат неочевиден (и даже неверен) для кривой поверхности. Чтобы понять дальнейшие рассуждения, следует сделать некоторое усилие и отрешиться от привычных и наглядных представлений о параллельных в евклидовом пространстве. Прежде всего определим для кривой поверхности однозначный аналог прямой между двумя точками. Уже упоминалось, что в общем случае этого требования недостаточно для однозначного определения «прямой» между двумя точками. Оно оказывается достаточным, если обе точки расположены близко друг к другу. Тогда кратчайший отрезок, соединяющий обе точки, называется геодезической линией. Если нужно провести геодезическую линию (аналог прямой) для двух произвольных точек, то ее составляют из отрезков геодезических, соединяющих близкие точки. Процедура параллельного переноса была предложена итальянским ученым Т.Леви-Чивита. возьмем на поверхности две 1 бесконечно-близкие точки M и M| и рассмотрим в точке M вектор поверхности a (лежащий в касательной плоскости к поверхности). Если перенести вектор a параллельно самому 1 себе (в евклидовом смысле) в точку M|, то он не будет лежать 1 в касательной плоскости в точке M| поверхности и не будет вектором поверхности. Спроектируем вектор a на касательную 1 1 плоскость к поверхности в точке M|, тогда получим вектор a|, 1 лежащий в касательной плоскости к поверхности в точке M| и 1 являющийся вектором поверхности. По определению, вектор a| 1 является параллельно перенесенным в точку M| вектором a. Если точки M и N отстоят на бесконечном расстоянии, то их следует соединить кривой, лежащей на поверхности, разбить ее на бесконечно малые участки и к каждому применить процедуру параллельного переноса. Получающийся в результате вектор зависит от вида соединяющей исходную и конечную точки кривой. Если кривая замкнута, то при возвращении в исходную точку параллельно перенесенный вектор не будет совпадать с исходным, а составит с ним некий угол BETA. Этот угол равен нулю, если параллельный перенос производится вдоль геодезической линии. Это связано с тем, что при параллельном переносе угол между переносимым вектором и геодезической линией не меняется. ?=РИС. 3 На рис. 3 изображена сферическая поверхность, на которой демонстрируется описанная процедура параллельного переноса. В результате параллельного переноса «прямой» вдоль окружности на сфере между первичным и конечным векторами возникает угол BETA ? 0. Можно предложить простую «экспериментальную» иллюстрацию параллельного переноса. Проведем краской на плоскости несколько параллельных прямых. Прокатим далее по этой плоскости конус, постулируя отсутствие трения между конусом и плоскостью, в том смысле, что трение не меняет первоначальное направление движения конуса, но достаточно велико, чтобы нанесенные на плоскость прямые отпечатались бы на конусе. Эти отпечатки и будут параллельными на конусе. Относительное положение двух близких отпечатков отражает параллельный перенос на конусе. Уже упоминалось, что связность отлична от нуля для кривого пространства. Поэтому связность — одна из нескольких характеристик искривления (отклонения от евклидовости) геометрической фигуры. До сих пор мы придерживаемся сравнительно привычных представлений. Пространства с обычными понятиями «точка» всегда можно хотя бы упрощенно иллюстрировать в виде двумерной поверхности. Сейчас наступило время перейти к расслоенным пространствам. Такой переход связан с некоторой психологической перестройкой. Хотя простейшие расслоенные пространства также можно мысленно представить в виде геометрических фигур, но всегда, когда оперируют с расслоенными пространствами, следует помнить, что они множество пространств, находящихся в неравноправном положении. Одно из них — база — занимает особое место. Если среди характеристик простых пространств связность занимает рядовое место (одна из нескольких характеристик), то в теории расслоенных пространств обобщенное понятие связности, пожалуй, основная характеристика. Связность в расслоенных пространствах играет ключевую роль: она характеризует отношения между базой и слоями и между соседними слоями. В общем случае определение связности имеет довольно сложный вид.' Мы здесь ограничимся простым и наглядным примером определения связности и некоторыми важными для физики приложениями. ------------------------------' См. кн.: Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. М.; Наука, 1979, Т.1. ------------------------------ Вернемся снова к рис. 3. Круг и цилиндр на нем расслоение полусферы, изображенной в верхней его части. Построим на полусфере треугольник, образованный геодезическими линиями — отрезками больших кругов. Разумеется (поскольку сфера — неевклидова поверхность), сумма углов треугольника не равна ?. Спроецируем точки треугольника на круг (базу), параллельный основанию полусферы. Прямые, осуществляющие проецирование, будем полагать слоями расслоенного пространства. Произведем далее операцию параллельного переноса на полусфере вдоль контура треугольника. Поскольку полусфера неевклидова поверхность, то при полном обходе треугольника (возвращение вектора в точку, совпадающую с началом вектора a) между направлениями первичного и конечного векторов (стрелки на рисунке) образуется некоторый угол — связность. Обобщим это понятие на расслоенное пространство. С этой целью спроецируем треугольник на круг (базу). Прямые, осуществляющие проекцию, — слои пространства. Проекции начального и конечного векторов на полусфере образуют на круге некоторый угол v ? 0, который является компонентой связности в базе. Чтобы определить связность в слоях, введем расстояние от начала слоя (отрезка), которое является, вообще говоря, произвольной точкой отсчета. Важно лишь, чтобы во всех слоях были бы одинаковые точки отсчета. Иначе говоря, любой круг, пересекающий слои и параллельный основанию полусферы, мог бы определить точки отсчета. Естественно (но не необходимо) отождествить точки отсчета с точками круга — базы. Будем далее измерять угол между векторами во время параллельного переноса в произвольных единицах (например, радианах) и откладывать этот угол на прямых — слоях пространства. В результате операции полный обход периметра треугольника на сфере будет соответствовать некоторому подъему величины проекции в слое. Этот подъем определяется смещением векторов в полусфере при возвращении в точку, совпадающую с началом вектора a после полного обхода контура. В пространстве слоев 1 начало обхода на полусфере соответствует точке a|, конец 1 1 1 d| (см. рис. 3). Таким образом, расстояние a|d| характеризует связность в слое. Расслоение полусферы на круг и линейное пространство одно из простейших расслоений, позволяющих дать наглядную интерпретацию связности расслоенного пространства. В общем случае подобная наглядность утрачивается. Идея введения общего определения связности близка к основной идее дифференциальной геометрии: в малом объеме метрика пространства евклидова или псевдоевклидова. В расслоенных пространствах также постулируется простота пространства в малом. Полагается, что в малом расслоенное пространство можно представить простым произведением, частным случае которого и было расслоение полусферы. В результате обхода микроконтура в полном пространстве или базе определяется компонента связности в базе. Далее в соответствии с приведенным выше примером операция обхода микроконтура количественно отображается в пространстве слоев, определяя таким образом связность в этом пространстве. В заключение сделаем одно замечание, имеющее, как мы увидим далее, прямое отношение к физике (динамике). Хотя значение связности определяется однозначно, однако операция ее вычисления неоднозначна. Это утверждение — следствие 1 неоднозначности в выборе начальной точки отсчета a|. Сделанный нами выбор: начало обхода контура соответствует пересечению слоя (прямой) и базы (круга) — обусловлен 1 простотой. Точку a| можно было бы сместить вдоль соответствующей прямой (слоя) на произвольную величину. 1 Связность определяется не положением точки a|, а разностью 1 1 отрезком a|d|. Примечания:1 Важно отметить, что в последнее время в физике микромира развиваются представления о том, что основным элементом геометрии — точкой — являются линейные элементы. Подробнее об этом см. разд. 10, гл. 2. 2 О некоторых свойствах элементарных частиц и их взаимодействиях см. Дополнение. 3 Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М.: Наука, 1973. Т.1. Механика, с.9. 4 Это утверждение верно с точностью до весьма малых релятивистских поправок, которые можно учесть при вычислении суммы углов. 5 См., например: Рашевский П.К. Курс дифференциальной геометрии. М.: ГИТТЛ, 1956. Кроме того, дифференциальная геометрия на разных уровнях излагается во многих книгах, посвященных теории относительности. |
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|