|
||||
|
Часть IV. До начала Глава 16 Было ли у Вселенной начало?
Проблема космического яйца Древние мифы о творении демонстрируют поразительное разнообразие, но на самом фундаментальном уровне они сводятся к одному из двух основных вариантов: либо Вселенная была создана конечное время назад, либо она существовала вечно.[144] Вот один из сценариев, взятый из священной индуистской книги "Упанишады":
Эта идея выглядит довольно простой, но, к сожалению, имеет серьезный недостаток, который присущ и всем остальным историям творения. Древние хорошо понимали эту проблему; индийский поэт Джинасена писал в IX веке:
Эта критика в равной мере приложима к любым сценариям возникновения космоса — будь то сотворение Богом, как в истории с космическим яйцом, или "естественное" творение, как в модели Большого взрыва современной космологии.[145] Согласно теории Большого взрыва, вся материя вокруг нас появилась из раскаленного космического огненного шара около 14 миллиардов лет назад. Но откуда появился огненный шар? Теория инфляции показала, что расширяющийся огненный шар может возникнуть из крошечного зародыша ложного вакуума. Но все равно остается вопрос: откуда взялся этот первоначальный зародыш? Что происходило до инфляции? В большинстве своем космологи не спешат браться за эту щекотливую тему. И действительно, похоже, что здесь не может быть удовлетворительного ответа. Каков бы ни был ответ, всегда можно спросить: "А что было перед этим?" Это и есть "бесконечная регрессия", о которой упоминает Джинасена. Однако в 1980-х годах, когда был разработан инфляционный сценарий, похоже, появилась привлекательная альтернатива. Вселенная вечной инфляции состоит из расширяющегося "моря" ложного вакуума, в котором постоянно зарождаются "островные вселенные", подобные нашей. Таким образом, инфляция — это никогда не прекращающийся процесс. Он закончился в нашей собственной островной вселенной, но будет неограниченно продолжаться в других отдаленных областях. Однако если инфляция бесконечна в будущем, то, вероятно, ей не нужно и начало в прошлом. Получается вечно инфлирующая вселенная без начала и конца, что исключает неразрешимые проблемы, связанные с происхождением космоса. Эта картина напоминает космологическую теорию стационарной вселенной 1940-50-х годов. Некоторые люди находили ее весьма привлекательной. Циклическая Вселенная Помимо стационарного состояния есть еще один способ сделать Вселенную вечной. И вновь индусы придумали его в далеком прошлом. Бесконечный цикл создания и уничтожения символизируется танцем Шивы. "Он приходит в состояние экстаза и, танцуя, посылает сквозь инертную материю пульсирующие волны пробуждающих звуков". Вселенная оживает, но потом "на исходе времен, продолжая танцевать, он разрушает все формы и имена в огне и делает передышку". Параллельная идея в научной космологии — это представление о пульсирующей вселенной, которая проходит через циклы расширения и сжатия. В 1930-х годах она короткое время была популярна, но потом вышла из моды из-за очевидного противоречия со вторым началом термодинамики. Второе начало требует, чтобы энтропия, которая служит мерой беспорядка, возрастала с каждым циклом космической эволюции. Если Вселенная уже прошла через бесконечное число циклов, она должна достичь состояния с максимальной энтропией — термодинамического равновесия. Однако очевидно, что мы не находимся в таком состоянии. Это проблема "тепловой смерти", о которой я упоминал раньше. Идея пульсирующей вселенной была отброшена больше чем полстолетия назад, но в 2002 году возродилась в новом образе благодаря Полу Стейнхардту и Нейлу Туроку из Кембриджа. Как и в ранних моделях, они предположили, что история Вселенной состоит из бесконечно повторяющихся циклов расширения и сжатия. Каждый цикл начинается с горячего расширяющегося огненного шара. Он расширяется и остывает, образуются галактики, и вскоре после этого во Вселенной начинает доминировать энергия вакуума. С этого момента Вселенная начинает расширяться экспоненциально, удваивая свои размеры примерно каждые 10 миллиардов лет. Спустя триллионы лет этой сверхмедленной инфляции Вселенная становится чрезвычайно однородной, изотропной и плоской. Наконец расширение замедляется и затем сменяется сжатием. Вселенная схлопывается и сразу же восстанавливается, давая старт новому циклу. Часть энергии, выделившейся при коллапсе, идет на создание горячего огненного шара вещества.[146] Стейнхардт и Турок доказывали, что в их сценарии не возникает проблемы начала. Вселенная всегда проходит один и тот же цикл, так что никакого начала попросту нет. Проблему тепловой смерти также удается обойти, поскольку степень расширения в каждом цикле больше, чем степень сжатия, так что объем Вселенной с каждым циклом возрастает. Энтропия нашей наблюдаемой области сегодня такая же, как энтропия аналогичной области в предыдущем цикле, но энтропия Вселенной в целом возросла — просто потому, что ее объем стал больше. С течением времени как энтропия, так и объем неограниченно растут. Состояние максимальной энтропии никогда не достигается, поскольку максимальной энтропии не существует. Таким образом, есть две возможных модели вечной вселенной без начала: одна основана на вечной инфляции, а другая — на циклической эволюции. Но, оказывается, ни одна из них не обеспечивает полного описания Вселенной. Пространство де Ситтера Когда физик хочет понять какое-то явление, первым делом он максимально его упрощает, отбрасывая все, кроме самого существенного. В случае вечной инфляции можно отбросить островные вселенные, сохранив только море инфляции. Кроме того, можно предположить, что Вселенная однородна и изотропна, как в моделях Фридмана. С этими упрощениями нетрудно решить уравнения Эйнштейна для инфлирующей Вселенной. Решение имеет геометрию трехмерной сферы, которая сжимается от очень большого радиуса в далеком прошлом. Сжатие замедляется отталкивающей гравитацией ложного вакуума, пока сфера на мгновение не остановится и не начнет затем расширяться. Силы гравитации теперь действуют в направлении движения, так что сфера расширяется с ускорением. Ее радиус растет экспоненциально, а время его удвоения определяется плотностью энергии ложного вакуума.[147] Это решение было найдено вскоре после создания теории относительности; оно называется пространством-временем де Ситтера в честь голландского астронома Виллема де Ситтера, который открыл его в 1917 году. Это пространство-время изображено на рисунке 16.1. Инфляция начинается в пространстве-времени де Ситтера лишь после того, как сферическая вселенная достигнет своего минимального радиуса. Но когда она начинается, экспоненциальное расширение продолжается бесконечно, так что инфляция вечна в будущем.
Если допустить образование островных вселенных в сжимающейся части пространства-времени, они бы сталкивались и сливались. Острова тогда быстро заполнили бы все пространство, ложный вакуум полностью исчез, а Вселенная продолжила бы коллапсировать вплоть до большого сжатия. Таким образом, инфляцию нельзя бесконечно продолжить в прошлое. У нее должно быть какое-то начало. Следует, однако, иметь в виду, что данный вывод основан на максимально упрощенной модели инфляции, в которой рассматривается однородная и изотропная вселенная. В действительности Вселенная на масштабах, значительно превышающих со временный горизонт, может быть очень неоднородной и анизотропной. Не окажется ли так, что фаза сжатия пространства де Ситтера есть побочный эффект наших упрощений? Нельзя ли в пространстве-времени более общего вида обойтись без начала? За пределами неразумных сомнений Эти сомнения удалось рассеять лишь недавно в статье, которую я написал в соавторстве с Эрвиндом Бордом (Arvind Borde) из Саутгемптонского колледжа и Аланом Гутом. Теорема, доказанная в этой статье, на удивление проста. Ее доказательство не выходит за рамки школьной математики, но для проблемы начала Вселенной она имеет важные следствия. В статье мы исследовали, как выглядит расширяющаяся вселенная с точки зрения разных наблюдателей. Мы рассматривали воображаемых наблюдателей, движущихся сквозь вселенную под действием гравитации и инерции и регистрирующих, что они видят. Если вселенная не имеет начала, то истории всех таких наблюдателей должны уходить в бесконечное прошлое. Мы показали, что такое предположение приводит к противоречию. Чтобы сделать разговор более конкретным, предположим, что в каждой галактике нашей области вселенной есть наблюдатель. Поскольку вселенная расширяется, каждый такой наблюдатель будет видеть, что остальные удаляются от него. В некоторых областях пространства и времени может не быть галактик, но мы все равно мысленно "рассеем" наблюдателей по всей вселенной таким образом, чтобы они удалялись друг от друга.[148] Будем называть этих наблюдателей "зрителями". Введем теперь другого наблюдателя, который движется относительно зрителей. Назовем его космическим путешественником. На протяжении целой вечности он летит по инерции, выключив двигатели своего космического корабля. Когда он пролетает мимо зрителей, те регистрируют его скорость. Поскольку наблюдатели разлетаются, скорость космического путешественника относительно каждого следующего зрителя будет меньше, чем относительно предыдущего. Предположим, например, что путешественник только что пронесся мимо Земли со скоростью 100 000 километров в секунду и сейчас движется в направлении далекой галактики примерно в миллиарде световых лет от нас. Эта галактика улетает от нас со скоростью 20 000 километров в секунду, так что, когда путешественник доберется до нее, тамошние наблюдатели увидят, что он движется со скоростью 80 000 километров в секунду. Если в будущем скорость космического путешественника относительно зрителей становится все меньше и меньше, это значит, что по мере углубления в историю его скорость должна становиться все больше и больше. В пределе она должна стать сколь угодно близкой к скорости света. Ключевая идея нашей с Бордом и Гутом статьи состоит в том, что по мере движения назад, к бесконечному прошлому, время, прошедшее по часам космического путешественника, остается конечным. Все дело в том, что, согласно эйнштейновской теории относительности, движущиеся часы замедляются, и чем ближе вы к скорости света, тем медленнее они идут. Чем дальше мы уходим назад во времени, тем ближе космический путешественник к скорости света, а его часы практически замирают. Так это выглядит для зрителей. Но сам космический путешественник не замечает ничего необычного. То, что кажется зрителям застывшим мгновением, растянувшимся на целую вечность, для него — обычный момент времени, которому предшествуют другие моменты. Как и истории зрителей, история космического путешественника должна продолжаться в бесконечное прошлое. Сам факт конечности времени, прошедшего по часам космического путешественника, указывает на то, что мы имеем дело с неполной его историей. Это означает, что часть прошлой истории вселенной отсутствует; она не включена в нашу модель. Таким образом, предположение, что все пространство-время можно покрыть расширяющейся пылью из наблюдателей, приводит к противоречию и поэтому не может быть истинным.[149] Замечательная особенность этой теоремы — широта ее охвата. Мы не использовали никаких допущений о материальном наполнении вселенной. Мы даже не предполагали, что гравитация описывается уравнениями Эйнштейна. Так что, если потребуется внести изменения в теорию гравитации, наши выводы не изменятся. Единственное сделанное нами предположение состояло в том, что скорость расширения вселенной никогда не была ниже некоторого ненулевого значения — неважно, насколько малого.[150] Это предположение, очевидно, должно выполняться в инфлирующей ложном вакууме. Отсюда вытекает невозможность вечной в прошлом инфляции, не имеющей начала. А что же с циклической вселенной? В ней есть чередующиеся периоды расширения и сжатия. Помогут ли они этой вселенной вырваться из когтей данной теоремы? Как выяснилось, ответ будет отрицательным. Существенная особенность циклического сценария, позволяющая обойти проблему тепловой смерти, состоит в том, что объем вселенной с каждым циклом возрастает, так что в среднем вселенная расширяется. В нашей статье было показано, что в результате такого расширения скорость космического путешественника в среднем возрастает по мере движения назад во времени и по-прежнему в пределе стремится к скорости света. Так что выводы остаются неизменными.[151] Говорят, что аргумент — это то, что убеждает разумного человека, а доказательство — то, что способно убедить даже неразумного. После публикации данного доказательства космологи не могли больше прятаться за возможностью вечной в прошлом Вселенной. Выхода не было: пришлось лицом к лицу встретиться с проблемой космического начала. Совместная с Аланом Гутом работа над этой статьей принесла мне незабываемые впечатления. Идея доказательства возникла в переписке по электронной почте между мной, Аланом и Арвиндом, а детали были доработаны за два часа, проведенных у доски, когда в августе 2001 года мы втроем встретились в моем кабинете в Тафтсе. Примерно через месяц мы написали статью и подали ее в Physical Review Letters. Я был поражен. Что случилось с Аланом и его легендарной склонностью все откладывать? Но в итоге он меня не разочаровал. Через несколько месяцев редактор прислал нам отзывы рецензентов, которые просили прояснить некоторые моменты в доказательстве. И вот тогда старый добрый Алан показал все, на что способен. Все с большими и большими интервалами от него приходили электронные письма с заголовками "Погряз в делах" или "Пока ничего не сделал". Когда он нашел немного времени для работы над статьей, то, похоже, потратил большую его часть на выяснение вопросов вроде того, как следует благодарить "анонимного рецензента" за его или ее замечания. Он дал подробный разбор всех "за" и "против" каждого варианта. Видимо, Алан подозревал, что редактирование статьи несколько затянулось, и в какой-то момент написал: "Я должен поблагодарить вас, ребята, что вы меня не пристрелили". Справедливости ради надо признать, что он потратил некоторое время и на более существенные вопросы, так что затянувшийся процесс редактирования статьи привел к значительным улучшениям. Она наконец была опубликована в апреле 2003 года.[152] Доказательство бытия Божия? Теологи весьма благосклонны к любым свидетельствам существования у Вселенной начала, считая их аргументами в пользу бытия Божия. Накопление данных о Большом взрыве в 1950-х годах вызвало энтузиазм в теологических кругах и среди религиозно настроенных ученых. "Что касается первопричины Вселенной, — писал британский физик Эдвард Милн, — то в контексте ее расширения окончательное решение, конечно, за читателем, однако наша картина будет неполна без Него".[153] Теория Большого взрыва даже снискала официальное одобрение церкви. В своем послании к Папской академии наук в 1951 году папа Пий XII писал, что "получены... надежно подтвержденные результаты относительно эпохи, когда Космос вышел из рук Творца. Значит, Творение имело место. Значит, существует Творец. Значит, существует Бог!"[154] В силу той же причины, которая вызвала восторгу папы, естественный инстинкт большинства ученых отвергает идею наличия у Космоса начала. "Чтобы отрицать бесконечную длительность времени, — писал нобелевский лауреат, немецкий химик Вальтер Нернст, — придется отбросить самые основания науки". Начало Вселенной слишком похоже на божественное вмешательство; кажется невозможным описать его научно. Это единственная мысль, на которой, по-видимому, сходятся ученые и теологи. Итак, что же нам делать с доказательством неизбежности начала? Доказывает ли оно существование Бога? Такой взгляд был бы слишком упрощенным. Всякий, кто пытается понять происхождение Вселенной, должен быть готов встретиться с логическими парадоксами. В этом отношении теорема, которую мы с коллегами доказали, не дает теологам существенных преимуществ перед учеными. Как следует из приведенного выше замечания Джинасены, религия не защищена от парадоксов творения. Впрочем, и ученые, возможно, слишком торопятся признавать, что начало космоса нельзя описать с чисто научных позиций. Да, действительно, трудно понять, как это можно было бы сделать. Но кажущаяся невозможность часто отражает лишь ограниченность нашего воображения. Глава 17 Сотворение вселенных из ничего
Инфляция в конце туннеля Вернемся в 1982 год, когда инфляция еще оставалась совсем свежей темой, полной неисследованных идей и требующих напряженной работы задач, — в общем, золотой жилой для молодого честолюбивого космолога. Самым интригующим и, пожалуй, наименее связанным с современным состоянием Вселенной был вопрос о том, как инфляция могла начаться. Инфляционная вселенная быстро "забывает" свои начальные условия, и состояние, с которого она стартовала, слабо влияет на то, что происходит потом. Так что, если вы хотите проверить инфляцию наблюдениями, не стоит тратить время на вопрос о ее начале. Но загадка начала все равно остается, и ее нельзя избежать. Она притягивает к себе как магнит. На первый взгляд проблема кажется довольно простой. Мы знаем, что небольшой области пространства, заполненной ложным вакуумом, достаточно, чтобы запустить инфляцию. Поэтому все, что нужно придумать, — это как такая область могла появиться из некоего предшествующего состояния Вселенной. В те годы доминировало представление, основанное на фридмановской модели, в которой Вселенная расширялась из сингулярного состояния с бесконечной кривизной и бесконечной плотностью материи. Если предположить, что Вселенная заполнена высокоэнергичным ложным вакуумом, любое вещество, которое в ней изначально присутствовало, становится разреженным, что приводит к доминированию энергии вакуума. С этого момента его отталкивающая гравитация берет верх, и начинается инфляция. Все это хорошо, но с чего бы Вселенной начинать расширяться? Одним из достижений теории инфляции было объяснение расширения Вселенной. Однако, похоже, нам нужно получить расширение еще до того, как начнется инфляция. Притягивающая гравитация вещества первоначально намного сильнее гравитационного отталкивания вакуума, так что, если не постулировать мощную первоначальную вспышку расширения, Вселенная просто сколлапсировала бы, и инфляция никогда бы не началась. Я некоторое время размышлял над этими аргументами, но логика была очень простой, и никакого выхода не просматривалось. И тогда я неожиданно понял, что вместо коллапса Вселенная может совершить нечто намного более интересное и драматичное... Рассмотрим замкнутую сферическую вселенную, заполненную ложным вакуумом и содержащую некоторое количество обычной материи. Предположим также, что в некоторый момент она находится в покое, не расширяясь и не сжимаясь. Если ее радиус мал, вещество сжато до высокой плотности, и вселенная сколлапсирует в точку. Если радиус велик, доминирует энергия вакуума, и начнется инфляция. Малые и большие радиусы разделяет барьер, который нельзя пересечь, не придав вселенной высокой скорости расширения. И вот неожиданно до меня дошло, что коллапс маленькой вселенной был неизбежным только в классической физике. В квантовой теории вселенная может туннелировать под энергетическим барьером и появиться по другую сторону — как это происходит с ядерными частицами в гамовской теории радиоактивного распада. Это выглядело изящным решением проблемы. Вселенная возникает чрезвычайно маленькой и с очень высокой вероятностью вновь коллапсирует в сингулярность. Но есть крошечный шанс, что вместо этого она туннелирует сквозь барьер, приобретет больший радиус и начнет инфляционно расширяться (рис. 17.1). Таким образом, в этой грандиозной картине мира будет масса вселенных-неудачниц, живущих лишь неуловимое мгновение, но будут и те, что сумеют сделаться большими.
Почувствовав, что достиг прогресса, я стал торопиться. Существуют ли для размера первичной вселенной какие-то ограничения снизу? Что случится, если мы позволим ей становиться все меньше и меньше? К моему удивлению, выяснилось, что даже при начальных размерах, стремящихся к нулю, шансы на туннелирование не исчезают. Я также заметил, что вычисления значительно упрощаются, если позволить начальному радиусу вселенной обратиться в нуль. Это была по-настоящему безумная идея: я получил математическое описание вселенной, туннелирующей из нулевого размера — из ничего! — в состояние с конечным радиусом и начинающей инфляционно расширяться. Похоже, никакого исходного состояния вселенной вовсе не требовалось! Туннелирование из ничего Идея вселенной, материализующейся из ничего, повергает в недоумение. Что в точности означает "ничто"? Если это "ничто" способно туннелировать в нечто, что может вызвать первичный акт туннелирования? И что происходит с законом сохранения энергии? Но чем дольше я думал над этим, тем более важной казалась мне эта идея. Начальное состояние, предшествующее туннелированию, — это вселенная с нулевым радиусом, то есть попросту отсутствие вселенной. В этом очень странном состоянии нет материи, нет пространства. Нет также и времени. Время имеет смысл, только если во вселенной что-то происходит. Мы измеряем время, используя периодические процессы, такие как вращение Земли вокруг своей оси или вокруг Солнца. Невозможно определить время в отсутствие пространства и материи. И вместе с тем состояние "ничто" нельзя определить как абсолютное небытие. Туннелирование описывается законами квантовой механики, а значит, "ничто" должно подчиняться этим законам. Законы физики должны существовать, несмотря на отсутствие вселенной. Я коснусь этого вопроса подробнее в главе 19. В результате акта туннелирования из ниоткуда рождается вселенная конечных размеров и немедленно начинает инфляционно расширяться. Радиус новорожденной вселенной определяется плотностью энергии вакуума: чем выше плотность, тем меньше радиус. Для вакуума Великого объединения это одна стотриллионная сантиметра. Вследствие инфляции эта крошечная вселенная растет с ошеломительной скоростью и за малую долю секунды намного превосходит размер наблюдаемой сегодня области. Если до возникновения вселенной ничего не было, тогда что же вызвало туннелирование? Как это ни удивительно, ответ состоит в том, что никакой причины для этого не требовалось. В классической физике причинность диктует, что случится в каждый следующий момент времени, однако в квантовой механике поведение физического объекта по сути непредсказуемо, и некоторые квантовые процессы совершенно беспричинны. Возьмем, к примеру, радиоактивный атом. У него есть некоторая вероятность распада, остающаяся неизменной от минуты к минуте. В конце концов он распадется, но нет никакой причины, которая заставила бы его распасться в какой-то определенный момент. Зарождение вселенной также является квантовым процессом и не требует причины. Большинство наших представлений неразрывно связаны с пространством и временем, и непросто создать мысленную картину вселенной, возникающей из ничего. Невозможно представить себя сидящим посреди "ничего" и ожидающим материализации вселенной, поскольку нет ни пространства, чтобы в нем сидеть, ни времени. В некоторых недавно предложенных моделях, основанных на теории струн, наше пространство представляет собой трехмерную мембрану (брану), плавающую в многомерном пространстве. В таких моделях можно представить многомерного наблюдателя, следящего за маленькими пузырьками вселенных — "мирами на бране", — появляющимися то здесь, то там, как пузырьки пара в кипящем чайнике. Мы живем на одном из таких пузырьков, который является расширяющейся трехмерной сферической браной. Для нас эта брана — единственное существующее пространство. Мы не можем оторваться от нее и не замечаем дополнительных измерений. Если проследить историю нашей пузырьковой вселенной назад в прошлое, мы достигнем момента зарождения. За ним наше пространство и время исчезают. От этой картины всего один маленький шаг до той, что я первоначально предложил. Просто уберите многомерное пространство. С нашей внутренней точки зрения ничего не изменится. Мы живем в замкнутом трехмерном пространстве, но это пространство не простирается повсюду. Если мы двинемся назад во времени, то обнаружим, что наша Вселенная имеет начало. И за ним нет пространства-времени. Элегантное математическое описание квантового туннелирования можно получить, используя так называемое евклидово время. Это не то время, которое измеряется по часам. Оно выражается при помощи мнимых чисел, таких как квадратный корень из ?1, и вводится лишь для удобства вычислений. Превращение времени в евклидово странным образом влияет на пространство-время: различие между временем и тремя пространственными измерениями полностью исчезает, так что вместо пространства-времени получается четырехмерное пространство. Если бы мы могли жить в евклидовом времени, то измеряли бы его линейкой в точности так, как мы измеряем длину. Это может показаться довольно странным, однако описание, сделанное в евклидовом времени, очень полезно: оно обеспечивает удобный способ определения вероятности туннелирования и начального состояния вселенной в момент, когда она обретает существование. Графически рождение вселенной можно изобразить пространственно-временной диаграммой на рисунке 17.2. Темная полусфера в нижней части отвечает квантовому туннелированию (в этой части пространства-времени время евклидово). Светлая верхняя часть — это пространство-время инфляционной вселенной. Граница между этими двумя областями пространства-времени — это вселенная в момент зарождения.
Замечательная особенность этого пространства-времени заключается в отсутствии сингулярностей. Фридмановское пространство-время имеет в начале сингулярную точку с бесконечной кривизной, где перестает работать математика эйнштейновских уравнений. Этой точке соответствует острый угол внизу левой схемы на рисунке 17.1. Напротив, в сферической евклидовой области нет таких точек; она повсюду имеет одинаковую конечную кривизну. Это было первое математически последовательное описание того, как могла родиться Вселенная. Пространственно-временная диаграмма на рисунке 17.2, напоминающая по форме бадминтонный волан, теперь стала логотипом Института космологии в Тафтсе. Я описал все это в короткой статье, озаглавленной "Создание вселенных из ничего".[155] Перед отправкой ее в журнал я на один день заехал в Принстонский университет, чтобы обсудить эти идеи с Малкольмом Перри (Malcolm Perry), крупным специалистом в области квантовой теории гравитации. После часа, проведенного у доски, Малкольм сказал: "Да, пожалуй, это не столь безумно... И как я сам до этого не додумался?" Может ли физик сделать лучший комплимент коллеге! Вселенная как квантовая флуктуация Моя модель вселенной, туннелирующей из ничего, не возникла на пустом месте — у меня были предшественники. Первое предположение такого рода восходит к Эдварду Трайону (Edward Tryon) из Хантеровского колледжа при Университете Нью-Йорка. Он выдвинул идею, что Вселенная возникла из вакуума благодаря квантовой флуктуации. Эта мысль впервые пришла к нему в 1970 году во время физического семинара. Трайон сказал, что она поразила его подобно вспышке света — как будто перед ним раскрылась некая глубочайшая истина. Когда докладчик сделал паузу, чтобы собраться с мыслями, Трайон выпалил: "Может быть, Вселенная — это вакуумная флуктуация!" Аудитория разразилась хохотом. Как уже говорилось раньше, вакуум вовсе не мертвый и статичный; это арена бешеной деятельности. В субатомных масштабах электрическое, магнитное и другие поля постоянно флуктуируют из-за непредсказуемых квантовых толчков. Геометрия пространства-времени также флуктуирует, неистово взбивая пространственно-временную пену на планковском масштабе расстояний. Вдобавок пространство полно так называемых виртуальных частиц, которые спонтанно появляются то здесь, то там и немедленно исчезают. Виртуальные частицы существуют очень недолго, поскольку живут за счет заемной энергии. Энергетические кредиты приходится отдавать, и, согласно принципу неопределенности Гейзенберга, чем больше энергии заимствуется у вакуума, тем быстрее ее надо вернуть. Виртуальные электроны и позитроны обычно появляются и исчезают примерно за одну триллионную долю наносекунды. Более тяжелые частицы живут и того меньше, поскольку для их материализации требуется больше энергии. И вот Трайон предполагает, что вся наша Вселенная с ее колоссальным количеством материи является лишь огромной квантовой флуктуацией, которая почему-то не может исчезнуть вот уже более десяти миллиардов лет. Все подумали, что это просто очень смешная шутка. Трайон, однако, не шутил. Он был настолько подавлен реакцией коллег, что забыл о своей идее и выбросил из памяти весь этот инцидент. Но мысль продолжала вариться в глубине его сознания и вновь появилась на поверхности три года спустя. В тот раз Трайон решил ее опубликовать. Его статья вышла в 1973 году в британском научном журнале Nature под заголовком "Является ли Вселенная вакуумной флуктуацией?" Предположение Трайона основывалось на хорошо известном математическом факте: энергия замкнутой вселенной всегда равна нулю. Энергия материи положительна, гравитационная энергия — отрицательна, и оказывается, что в замкнутой вселенной их вклады в точности сокращаются. Так что, если замкнутая вселенная возникнет как квантовая флуктуация, вакууму ничего не понадобится отдавать, а время жизни флуктуации может быть сколь угодно большим. Создание замкнутой вселенной из вакуума проиллюстрировано на рисунке 17.3. Область плоского пространства начинает вспучиваться, пока не приобретает форму шара. В тот же самый момент в этой области рождается колоссальное количество частиц. Наконец шар отделяется, и — вуаля! — мы получили замкнутую вселенную, которая совершенно не связана с исходным пространством.[156] Трайон предположил, что наша Вселенная могла возникнуть именно таким образом, и подчеркнул, что подобное творение не требует причины. "На вопрос, почему это случилось, — писал он, — я отвечу скромным предположением, что наша Вселенная — из числа тех вещей, что время от времени случаются".[157]
Главная проблема с трайоновской идеей состоит в том, что она не объясняет, почему Вселенная такая большая. Крошечные замкнутые вселенные постоянно отделяются от любой крупной области пространства, но вся эта деятельность протекает в планковском масштабе размеров в форме пространственно-временной пены, изображенной на рисунке 12.1. Образование большой замкнутой вселенной в принципе возможно, но вероятность того, что это случится, гораздо ниже, чем вероятность для обезьяны случайно напечатать полный текст шекспировского "Гамлета". В своей статье Трайон доказывал, что, даже если большинство вселенных чрезвычайно малы, наблюдатели могут появиться только в больших вселенных, а значит, мы не должны удивляться, что живем в одной из них. Но этого недостаточно, чтобы справиться с данным затруднением, поскольку наша Вселенная гораздо больше, чем нужно для развития жизни. Более глубокая проблема трайоновского сценария состоит в том, что он в действительности не объясняет происхождение Вселенной. Квантовая флуктуация вакуума предполагает наличие вакуума в некоем исходно существующем пространстве. А мы теперь знаем, что понятия "вакуум" и "ничто" очень сильно различаются. Вакуум, или пустое пространство, обладает энергией и натяжением, он может сгибаться и искривляться, а значит, это, безусловно, нечто.[158] Как писал Алан Гут, "в данном контексте предположение о том, что Вселенная была создана из пустого пространства, не более фундаментально, чем предположение, что она была выдута из куска резины. Это может оказаться правдой, но люди все равно будут спрашивать, откуда появился этот кусок резины".[159] В картине квантового туннелирования из ничего нет ни одной из этих проблем. Сразу после туннелирования Вселенная имеет крошечные размеры, но она заполнена ложным вакуумом и немедленно начинает инфляционно расширяться. За долю секунды она раздувается до гигантских размеров. До туннелирования пространства и времени не существует, так что вопрос о том, что было раньше, не имеет смысла. Ничто — состояние без материи, без пространства и без времени — по-видимому, единственное, что удовлетворяет требованиям к начальной точке творения. Через несколько лет после публикации моей статьи о туннелировании из ничего я узнал, что упустил в ней важную ссылку. Обычно такие вещи всплывают гораздо быстрее в электронных письмах от авторов, которых забыли упомянуть. Но этот автор не написал мне, и на то была уважительная причина: он умер более 1500 лет назад. Его звали Блаженным Августином, и он был епископом Гиппо, одного из крупнейших городов Северной Африки. Августина чрезвычайно интересовал вопрос, что делал Бог до творения, — поиски ответа он красноречиво описал в своей "Исповеди". "Если Он ничем не был занят... и ни над чем не трудился, почему на всё время и впредь не остался Он в состоянии покоя, в каком всё время пребывал и раньше?" Августин полагал, что для ответа на этот вопрос он сначала должен понять, что такое время: "Что же такое время? Если никто меня об этом не спрашивает, я знаю, что такое время; если бы я захотел объяснить спрашивающему — нет, не знаю". Четкий анализ привел его к пониманию, что время может быть определено только через движение, а значит, не может существовать прежде Вселенной. Окончательный вывод Августина: "Мир был создан не во времени, но вместе со временем. Не было времени до мира". А потому бессмысленно спрашивать, что тогда делал Бог. "Если не было времени, то не было "тогда".[160] Это очень близко к тому, что я обосновывал в своем сценарии туннелирования из ничего. Об идеях Августина мне стало известно случайно, из беседы с моей коллегой по Тафтсу Кэтрин Маккарти (Kathryn McCarthy). Я прочел "Исповедь" и сослался на святого Августина в моей следующей статье.[161] Множество миров Вселенная, возникающая в результате квантового туннелирования, не будет идеально сферической. Она может иметь множество различных форм и быть заполнена разными типами ложного вакуума. Как обычно, в квантовой теории нельзя сказать, какие из этих возможностей реализовались, а можно только подсчитать их вероятности. Может ли тогда оказаться, что существует множество других вселенных, которые стартовали иначе, чем наша? Этот вопрос тесно связан с острейшей проблемой интерпретации квантовых вероятностей. В главе и были описаны две основные альтернативы. Согласно копенгагенской интерпретации, квантовая механика приписывает вероятности всем возможным исходам эксперимента, но лишь один из них на самом деле реализуется. Напротив, эвереттовская интерпретация утверждает, что все возможные исходы реализуются в несвязанных "параллельных" вселенных. Если принимать копенгагенскую интерпретацию, то творение было однократным событием, в котором из ничего появилась единственная Вселенная. Это, однако, приводит к проблеме. С наибольшей вероятностью из ничего возникает крошечная вселенная планковских размеров, которая не станет туннелировать, а немедленно сколлапсирует и исчезнет. Туннелирование в большие размеры имеет низкую вероятность, а значит, требует большого числа попыток. По-видимому, это совместимо только с интерпретацией Эверетта. В эвереттовской картине мира существует ансамбль вселенных со всеми начальными состояниями. Большинство из них — "мерцающие" вселенные планковского размера, мгновенно возникающие и прекращающие существование. Но помимо них есть и вселенные, которые туннелировали в большие размеры и стали инфляционно расширяться. Ключевое отличие от копенгагенской интерпретации состоит в том, что все эти вселенные не просто возможные, a реальные.[162] Однако наблюдаться могут только большие вселенные, поскольку в "мерцающих" невозможно появление наблюдателей. Все входящие в ансамбль вселенные совершенно независимы друг от друга. Каждая имеет собственное пространство и собственное время. Вычисления показывают, что наиболее вероятными — а значит, и самыми многочисленными — среди туннелирующих вселенных являются те, что имеют наименьший начальный радиус и наивысшую плотность энергии ложного вакуума. Есть все основания предполагать, что наша Вселенная зародилась как раз такой. В моделях инфляции со скалярным полем наивысший уровень плотности энергии вакуума достигается на вершине энергетического холма, и потому в большинстве зарождающихся вселенных скалярное поле будет находиться в этой области. Это самая предпочтительная стартовая точка для инфляции. Помните, я обещал объяснить, как поле попадает на вершину холма? В сценарии туннелирования из ничего это как раз то состояние, в котором Вселенная обретает существование. Зарождение Вселенной по сути есть квантовая флуктуация, и ее вероятность быстро убывает с ростом охваченного ею объема. Вселенные, имеющие при возникновении больший начальный радиус, менее вероятны, а в пределе бесконечного радиуса вероятность стремится к нулю. Бесконечная открытая вселенная имеет строго нулевую вероятность зарождения, а значит, в ансамбле должны быть только замкнутые вселенные. Фактор Хокинга В июле 1983 года несколько сотен физиков со всего мира собрались в итальянском городе Падуе на 10-ю конференцию по общей теории относительности и гравитации. Конференция проходила в Палаццо делла Раджоне — старинном здании суда XIII века в самом сердце Падуи. Первый его этаж занят знаменитым базаром, который продолжается снаружи на прилегающей площади. На верхнем этаже располагается вместительный зал, украшенный по периметру фресками со знаками Зодиака. В нем-то и проходили выступления. Гвоздем программы был доклад Стивена Хокинга, озаглавленный "Квантовое состояние Вселенной". Чтобы попасть в лекционный зал, нужно подняться по длинной лестнице, так что доставить туда Хокинга в его инвалидном кресле было непростой задачей. Мне повезло, что я пришел заранее, поскольку к началу доклада зал был полностью забит. В своем выступлении Хокинг предложил совершенно новый взгляд на квантовое происхождение Вселенной, основанное на работе, выполненной им совместно с Джеймсом Хартлом Games Hartle) из Университета Калифорнии в Санта-Барбаре.[163] Вместо того чтобы сконцентрироваться на первых моментах творения, он задался более общим вопросом: как вычислить квантовую вероятность пребывания Вселенной в некотором конкретном состоянии? К данному состоянию Вселенная может прийти посредством огромного множества возможных историй, и квантовая механика позволяет определить, каков вклад каждой из них в его вероятность.[164] Итоговое значение вероятности зависит оттого, какие классы историй включены в расчет. Хартл и Хокинг предложили включать только истории, в которых пространство-время не имеет границ в прошлом. Пространство без границ нетрудно себе представить: это просто означает замкнутую вселенную. Но Хартл и Хокинг потребовали, чтобы пространство-время не имело также границы или края во времени со стороны прошлого. Оно должно быть замкнуто во всех четырех измерениях, за исключением границы, соответствующей настоящему моменту (рис. 17.4).
Граница в пространстве означает, что существует нечто за пределами вселенной, так что вещи могут уходить за границу и появляться из-за нее. Граница во времени соответствует началу вселенной, где должны быть заданы начальные условия. Согласно предложению Хартла и Хокинга, Вселенная не имеет таких границ; она "полностью самодостаточна и не испытывает никаких воздействий извне". Это кажется очень простой и привлекательной идеей. Единственная проблема состоит в том, что пространств-времен, замкнутых со стороны прошлого — таких, как на рисунке 17.4, — не существует. У пространства-времени должно быть три пространственно-подобных и одно времени-подобное измерение в каждой точке, а в замкнутом пространстве-времени обязательно есть аномальные точки с более чем одним времени-подобным направлением (рис. 17.5).
Чтобы справиться с этим затруднением, Хартл и Хокинг предложили перейти от реального времени к евклидовому. Как говорилось в прошлой главе, евклидово время не отличается от других пространственных измерений, так что пространство-время просто становится четырехмерным пространством, и его без проблем можно сделать замкнутым. Таким образом, предложение состояло в том, чтобы вычислять вероятности суммированием вклада всех евклидовых пространств-времен без границ. Хокинг подчеркивал, что это было лишь предложение. У него не было доказательства его корректности, и единственным способом получить его была проверка: удастся или нет сделать на данном пути разумные предсказания. Предложение Хартла-Хокинга обладает определенной математической красотой, но я думаю, что после перехода к евклидовому времени оно в значительной мере теряет свою интуитивную привлекательность. Вместо суммирования по всем возможным историям Вселенной нам предлагается суммировать по историям, которые заведомо невозможны, поскольку мы не живем в евклидовом времени. Так что после того, как убираются строительные леса первоначальной мотивации, мы остаемся с довольно формальным рецептом вычисления вероятностей.[165] В конце своего доклада Хокинг коснулся тех следствий, которые вытекали из нового предложения для инфляционной вселенной. Он показал, что основной вклад в сумму по историям дается евклидовым пространством-временем, имеющим форму полусферы, — точно так же, как и в моих расчетах туннелирования, — и что последующая эволюция описывается инфляционным расширением в обычном времени. (Переключение от евклидова формализма обратно к обычному времени — довольно хитрая процедура, которую я не стану пытаться здесь описать.) Результатом была такая же история пространства-времени, как и на моем рисунке 17.3, но полученная из совершенно других посылок. Я ожидал, что Хокинг упомянет мою работу по квантовому туннелированию из ничего, и был разочарован, когда он этого не сделал. Но я был уверен, что теперь, когда на площадку вышел Хокинг, вся тема квантовой космологии, в том числе и моя работа, получит значительно больше внимания, чем прежде. Много шума из ничего Важное различие между "туннелированием из ничего" и предложением об "отсутствии границ" состоит в том, что они дают сильно различающиеся, в некотором смысле противоположные, предсказания для вероятностей. Предположение о туннелировании благоприятствует зарождению вселенной наименьшего размера и с наивысшей энергией вакуума. Из требования отсутствия границ, наоборот, вытекает, что наиболее вероятной стартовой точкой является вселенная с наименьшей энергией вакуума и наибольшим возможным размером. Самым вероятным будет появление из ничего бесконечного пустого плоского пространства. Мне кажется, в это очень трудно поверить! Конфликт между этими двумя подходами стал очевиден только после одного первоначального недоразумения. В моей статье 1982 года делался вывод, что крупные вселенные имеют более высокую вероятность зарождения, так что казалось, будто два предложения согласуются друг с другом. Я продолжал возвращаться к тем своим выкладкам, поскольку этот вывод резко противоречил интуиции. В 1984 году я обнаружил ошибку, которая изменила расклад вероятностей на противоположный. Когда Хокинг посетил Гарвард, я поспешил переговорить с ним и поделиться своим новым пониманием. Однако переубедить Стивена не удалось, и он по-прежнему считал, что правильным является мой первоначальный результат.[166] Хокинг стал настоящей легендой в кругу физиков, да и за его пределами. Я восхищаюсь как его научными результатами, так и его силой духа и очень дорожу возможностями побеседовать с ним. Поскольку общение требует от него столь больших усилий, люди часто стесняются к нему обращаться. Мне потребовалось время, чтобы понять: Стивен действительно получает удовольствие от диалога и даже не обижается, когда над ним подшучивают. У нас очень разные взгляды на вечную инфляцию и квантовую космологию, но это делает дискуссию только интереснее. В 1988 году я вступил в схватку на хокинговской территории и сделал доклад перед его группой в Кембриджском университете, подчеркивая преимущества моего подхода. Когда выступление закончилось, Хокинг подкатился ко мне на своем кресле. Я ожидал критических замечаний, но вместо этого он пригласил меня поужинать вместе... После утки с картошкой и пирога со сливами, приготовленных его матерью, мы заговорили об использовании "кротовых нор" — туннелей в пространстве-времени — для межгалактических путешествий. Таково представление физиков о светской беседе после ужина. Что же касается предложения об отсутствии границ, Стивен не изменил своего мнения. Спор между сторонниками этих двух подходов продолжается до сих пор. Состоялись даже "официальные" дебаты на конференции COSMO-98 в Монтеррее, Калифорния, где Хокинг защищал предложение об отсутствии границ, а я — о туннелировании.[167] Правда, большой полемики в действительности не получилось. Хокингу требовалось много времени, чтобы составить фразу при помощи своего синтезатора речи, так что мы не смогли далеко уйти от заранее заготовленных тезисов.
Разрешить этот спор удалось бы, если изобрести наблюдательный тест, позволяющий выбрать между двумя предположениями. Это, однако, весьма маловероятно по причине вечной инфляции. Квантовая космология дает предсказания о начальном состоянии Вселенной, но в ходе вечной инфляции любые проявления начальных условий полностью стираются. Возьмем, к примеру, ландшафт теории струн, который мы обсуждали выше. Можно начать с одного инфляционного вакуума или с другого, но неизбежно станут образовываться пузыри иных вакуумов, так что задействованным окажется весь ландшафт. Свойства результирующего мультиверса не будут зависеть от того, как началась инфляция.[168] Таким образом, квантовая космология пока не собирается становиться наблюдательной наукой. Дискуссия о двух подходах, возможно, разрешится теоретическими выкладками, а не наблюдательными данными. Например, если окажется, что квантовое состояние Вселенной определяется неким новым, еще не открытым принципом теории струн. И оно может, конечно, оказаться отличным от обоих нынешних предложений. Но определенность с этим вопросом вряд ли будет достигнута в скором времени. Глава 18 Конец света
Мое описание Вселенной было бы неполным без рассказа о том, какой конец ее ждет. Теория инфляции говорит нам, что Вселенная как целое будет существовать вечно, но наша местная область — наблюдаемая Вселенная — вполне может иметь конец. Этот вопрос был в центре внимания космологов на протяжении большей части прошлого столетия, и за это время наши представления о конце света несколько раз менялись. Я не буду касаться истории данного вопроса, а изложу современное состояние космической эсхатологии. Безжалостные варианты После того как Эйнштейн отказался от космологической постоянной в начале 1930-х годов, предсказания фридмановских однородных и изотропных моделей стали простыми и понятными: Вселенная подвергнется коллапсу и большому сжатию, если ее плотность больше критической, и продолжит вечно расширяться в противном случае. Все, что нужно сделать для определения судьбы Вселенной, — это тщательно измерить среднюю плотность материи и посмотреть, превосходит ли она критическую. Если да, то расширение Вселенной будет постепенно замедляться и затем сменится сжатием. Сначала медленным, потом все ускоряющимся. Галактики станут сходиться все ближе, пока не сольются в огромный конгломерат звезд. Небо будет делаться все ярче, но не из-за звезд — все они, скорее всего, умрут к тому времени, — а из-за растущей интенсивности космического микроволнового излучения. Оно разогреет остатки звезд и планет до весьма неприятных температур, и любые существа, ухитрившиеся дожить до этих последних дней, почувствуют себя лобстерами в кипящей воде. Наконец, звезды разрушатся в столкновениях друг с другом или испарятся под действием мощного теплового излучения. Образовавшийся горячий огненный шар будет похож на тот, что существовал в ранней Вселенной, за исключением того, что теперь он станет сжиматься, а не расширяться. Еще одно отличие от Большого взрыва состоит в том, что сжимающийся огненный шар сильно неоднороден. Сначала более плотные области сожмутся в черные дыры, которые затем будут сливаться и укрупняться, пока все они не объединятся в одном большом сжатии. В противоположном варианте — при плотности меньше критической — гравитационное притяжение вещества слишком слабо, чтобы обратить расширение вспять. Вселенная будет расширяться вечно. Менее чем через триллион лет все звезды исчерпают свое ядерное топливо, и галактики превратятся в скопища холодных звездных остатков — белых карликов, нейтронных звезд и черных дыр. Вселенная станет совершенно темной, с призрачными галактиками, разлетающимися прочь в расширяющейся пустоте. Такое положение дел сохранится по меньшей мере 1031 лет, но в конце концов нуклоны, из которых состоят звездные остатки, распадутся, превратившись в легкие частицы — позитроны, электроны и нейтрино. Электроны и позитроны аннигилируют в фотоны, и мертвые звезды медленно растворятся. Даже черные дыры не существуют вечно. Согласно знаменитой хокинговской догадке, из них должна происходить утечка излучения, а значит, они постепенно потеряют свою массу или, как говорят физики, "испарятся". Так или иначе, менее чем через гугол лет все знакомые нам структуры во Вселенной перестанут существовать. Звезды, галактики и их скопления исчезнут без следа, оставив после себя лишь становящуюся все более разреженной смесь нейтрино и излучения.[169] Судьба Вселенной закодирована параметром, называемым омега, который определяется как отношение средней плотности Вселенной к критической плотности. Если омега больше 1, Вселенная завершит свое существование большим сжатием; если он меньше 1, следует ожидать замерзания и медленного распада. При пограничном значении, если параметр омега равен 1, расширение будет бесконечно замедляться, но никогда полностью не остановится. Вселенная на пределе избежит большого сжатия, но лишь затем, чтобы превратиться в замерзшее кладбище. Более полувека астрономы пытались измерить значение омега. Однако природа была не склонна раскрывать свои долгосрочные планы. Параметр омега был на удивление близок к 1, но точности измерений не хватало, чтобы сказать, больше он или меньше. Инфляционный поворот Представления о конце Вселенной изменились в 1980-х годах, когда на сцену вышла идея инфляции. Прежде большое сжатие и неограниченное расширение априори казались равновероятными, но теперь новая теория инфляции дала весьма определенные предсказания. Во время инфляции плотность Вселенной становится предельно близкой к критической. В зависимости от квантовых флуктуации скалярного поля некоторые области приобретают плотность выше или ниже критической, но в среднем она почти точно критическая. Те, кого мучают кошмары, вызванные грядущим через несколько триллионов лет большим сжатием, могут расслабиться. Конец будет медленным и невпечатляющим: холодный остаток Солнца будет целые эоны висеть в пустоте, дожидаясь, пока распадутся все его нуклоны. Характерная особенность критической плотности состоит в том, что процесс образования структур растягивается на огромный отрезок времени, поскольку более крупные структуры требуют больше времени на формирование. Сначала возникают галактики, затем они сбиваются в скопления, а те впоследствии образуют сверхскопления. Если средняя плотность в наблюдаемой части Вселенной выше критической, то примерно через сотню триллионов лет вся эта область превратится в огромное супер-пупер-скопление. К этому времени все звезды уже прогорят, а все наблюдатели, вероятно, вымрут, но образование структур будет продолжаться, охватывая все большие и большие масштабы. Оно остановится, только когда космические структуры исчезнут из-за распада нуклонов и испарения черных дыр. Другое изменение, связанное с инфляцией, состоит в том, что конец Вселенной в целом никогда не наступит. Инфляция вечна. В других частях инфлирующего пространства-времени будут формироваться бесчисленные области, похожие на нашу, а их обитатели будут пытаться понять, как все это началось и чем закончится. Галактическое одиночество Фридмановская взаимосвязь между плотностью Вселенной и ее окончательной судьбой работает, только если плотность энергии вакуума (космологическая постоянная) равна нулю. Это было стандартным предположением до 1998 года, но когда были обнаружены свидетельства обратного, все прежние предсказания будущего Вселенной пришлось пересмотреть. Главный прогноз, согласно которому конец света (локальный) будет ледяным, а не огненным, сохранился, но некоторые детали изменились. Как уже отмечалось, расширение Вселенной начинает ускоряться, как только плотность вещества становится ниже, чем у вакуума. В этот момент всякое гравитационное скучивание останавливается. Скопления галактик, которые уже связаны друг с другом гравитационно, сохраняются, но более рыхлые группы рассеиваются отталкивающей гравитацией вакуума. Наш Млечный Путь связан с так называемой Местной Группой, включающей гигантскую спиральную галактику в Андромеде и около 20 карликовых галактик. Туманность Андромеды держит курс на столкновение с Млечным Путем; они сольются примерно через 10 миллиардов лет. Галактики за пределами Местной Группы, двигаясь все быстрее и быстрее, улетят прочь. Одна за другой они будут пересекать наш горизонт и исчезать из виду. Этот процесс завершится через несколько сотен миллиардов лет. В ту далекую эпоху астрономия станет очень скучным делом. Кроме гигантской галактики, образовавшейся после слияния Туманности Андромеды с ее карликовыми спутниками, на небе не будет практически ничего.[170] Так что порадуемся небесному шоу, пока еще есть такая возможность! Окончательный вердикт Наш прогноз для Вселенной был бы завершен, если бы космологическая постоянная действительно была константой. Но, как мы знаем, есть серьезные основания считать, что плотность энергии вакуума меняется в очень широком диапазоне, принимая различные значения в разных частях Вселенной. В некоторых областях она имеет большое положительное значение, в других — большое отрицательное, и лишь в редких местах, где она близка к нулю, есть существа, которые знают об этом. Таким образом, наблюдаемое нами значение не является наименьшей возможной плотностью энергии, а значит, в будущем она неизбежно станет меньше. Рассмотрим, например, модель Линде, в которой энергия вакуума объясняется скалярным полем с очень пологим энергетическим ландшафтом (см. рис. 13.1). Уклон столь мал, что поле очень незначительно изменилось за 14 миллиардов лет, прошедших после Большого взрыва. Но в конце концов оно начнет катиться вниз, и космическое ускорение станет замедляться. В некоторый момент поле опустится ниже нулевой отметки, к отрицательным значениям плотности энергии. Отрицательная энергия вакуума дает гравитационное притяжение, так что долгое космическое расширение остановится и сменится сжатием. Другой сценарий, вытекающий из представления о ландшафте теории струн, говорит, что в классическом смысле наш вакуум стабилен и имеет постоянную плотность энергии, но квантово-механически он может распадаться, образуя пузырьки. Те из них, в которых вакуум имеет отрицательную энергию, однажды появившись, будут расширяться с околосветовой скоростью. Стенка пузыря может надвигаться на нас прямо сейчас. Мы не узнаем о ее подходе: она движется так быстро, что свет не намного ее опережает. Приход стенки приведет к полному уничтожению нашего мира. Даже частицы, составляющие звезды, планеты и наши тела, не смогут существовать в новом типе вакуума. Все знакомые объекты мгновенно разрушатся и превратятся в сгустки какой-то неизвестной нам материи. Так или иначе, но энергия вакуума станет в конце концов отрицательной в нашей области Вселенной. Тогда здесь начнется уплотнение с последующим коллапсом большого сжатия.[171] Вряд ли можно предсказать, когда именно это случится. Темп зарождения пузырьков может быть очень низким, поэтому не исключено, что пройдут гуголы лет, пока на наши окрестности надвинется стенка пузыря. В моделях скалярного поля время апокалипсиса зависит от уклона энергетического холма и может наступить довольно скоро, всего, например, через 20 миллиардов лет. Глава 19 Огонь в уравнениях
Совет Альфонса Альфонс Мудрый, правивший Кастилией в XIII веке, глубоко уважал астрономию. На то имелись совершенно прагматические причины: знание точного положения планет на небе было жизненно необходимо для составления точных гороскопов. Для повышения их качества Альфонс заказал новые астрономические таблицы, основанные на теории Птолемея — последнем слове тогдашней космологии. Но когда ему объяснили тонкости птолемеевой системы, он отреагировал весьма скептически: "Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще".[172] Король Альфонс мог бы сказать то же самое и о той картине мира, которую я нарисовал в этой книге. Она говорит о существовании бесконечного ансамбля вселенных, каждая из которых пестрит областями с разной физикой элементарных частиц. Области, где могут жить разумные существа, редки и разделены громадными расстояниями. Еще реже встречаются области, совершенно идентичные между собой, но даже их существует бесконечное множество. Какое расточительство пространства, материи и вселенных! Однако нам не стоит слишком беспокоиться о количестве вселенных. Новая картина мира экономит куда более ценный товар: она значительно снижает число произвольных предположений, которые делаются о Вселенной. Лучшая теория — та, которая объясняет мир, опираясь на минимальные и простейшие предположения. Ранние космологические модели исходили из того, что Творец тщательно сконструировал и тонко настроил Вселенную. Каждая деталь в физике элементарных частиц, каждая фундаментальная постоянная и все первичные возмущения нужно было выставить строго определенным образом. Представьте только бесчисленные тома спецификаций, которые Творец вручал своим ассистентам для выполнения работы! Новая картина мира предлагает совершенно иной образ Творца. После некоторого раздумья он пришел к набору уравнений фундаментальной теории всей природы. Этим запускается процесс неудержимого творения. Никаких дальнейших инструкций не требуется: теория описывает квантовое зарождение вселенных из ничего, процесс вечной инфляции и создание областей со всеми возможными типами физики элементарных частиц — до бесконечности. Каждый конкретный элемент ансамбля вселенных невероятно сложен, и для его описания понадобилось бы огромное количество информации. Но весь ансамбль в целом можно закодировать относительно простым набором уравнений.[173] Бог как математик Как узнать, что наш портрет Творца близок к истине? Пытался ли он оптимизировать использование "ресурсов", таких как пространство и материя, или больше заботился о сжатости математического описания природы? К сожалению, он не дает интервью, но продукт его работы — Вселенная — не оставляет сомнений на этот счет. Поверхностного взгляда на Вселенную достаточно, чтобы убедиться, с какой великой расточительностью растрачивались материя и пространство. Бесчисленные галактики разбросаны в пустом космосе на колоссальных расстояниях друг от друга. Галактики делятся на несколько типов, среди которых спиральные и эллиптические, карликовые и гигантские. Но за исключением этого все они очень похожи друг на друга. Творец ясно дает понять, что не стесняется бесконечно повторять свои работы. Более внимательный анализ открывает нам, что Творец без ума от математики. Пифагор в VI веке до нашей эры, вероятно, впервые предположил, что математические соотношения лежат в основе всех физических явлений. Его догадка была подтверждена веками научных исследований, и теперь мы считаем само собой разумеющимся, что природа подчиняется математическим законам. Но если остановиться и задуматься, то тот факт выглядит крайне странным. Математика кажется продуктом чистого мышления, очень слабо связанным с опытом. Но почему же тогда она так идеально подходит для описания физической Вселенной? Это именно то, что физик Юджин Вигнер называл "непостижимой эффективностью математики в естественных науках". Рассмотрим в качестве простого примера эллипс. Он был известен древним грекам как кривая, которая получается при разрезании конуса плоскостью под определенным углом. Архимед и другие греческие математики изучали свойства эллипса просто из интереса к геометрии. Затем, более 2000 лет спустя, Иоганн Кеплер открыл, что планеты в своем движении вокруг Солнца с высокой точностью описывают эллипсы. Но что общего у движений Марса и Венеры с коническими сечениями? Ближе к нашему времени, в 1960-х годах, мой друг математик Виктор Кац (Victor Кас) исследовал класс замысловатых математических структур, известных как алгебры Каца-Муди. Единственной мотивом для этого был его нюх, который подсказывал: эти структуры пахнут чем-то интересным и могут привести к красивым математическим результатам. Никто не мот предсказать, что через пару десятилетий эти алгебры станут играть ключевую роль в теории струн. Эти примеры не являются исключениями. Чаще случается именно так, а не наоборот: физики обнаруживают, что математические построения, необходимые им для описания нового класса явления, уже исследованы математиками по причинам, не имеющим ничего общего с обсуждаемыми явлениями. Похоже, что Творцу присуще математическое чувство красоты. Многие физики, полагаясь на эту его черту, используют математическую красоту в качестве путеводной нити в поисках новых теорий. Согласно Полю Дираку, одному из основоположников квантовой механики, "красота уравнений важнее их соответствия эксперименту, потому что расхождения могут быть вызваны второстепенными причинами, которые прояснятся по мере развития теории".[174] Математическую красоту определить ничуть не проще, чем в красоту в искусстве.[175] Примером того, что математики считают красивым, может служить формула Эйлера: ei? = 0. Один из критериев красоты — это простота, но одной простоты недостаточно. Формула 1 + 1 = 2 проста, но не особо красива, поскольку тривиальна. Напротив, формула Эйлера демонстрирует весьма неожиданную связь между тремя, казалось бы, независимыми числами: числом e, известным как основание натуральных логарифмов, "мнимым" числом i — квадратным корнем из ?1 и числом ? — отношением длины окружности к ее диаметру. Это свойство можно назвать глубиной. Красивая математика соединяет простоту и глубину. Если и в самом деле Творец имеет математический склад ума, тогда уравнения окончательной Теории Всего должны быть поразительно простыми и невероятно глубокими. Некоторые считают, что эта окончательная теория есть теория струн, которую мы сейчас открываем. Безусловно, она очень глубока. Простой ее не назовешь, но простота может проявиться, когда теория будет лучше понята. Математическая демократия Если мы когда-нибудь откроем окончательную Теорию Всего, останется вопрос: почему именно эта теория? Математическая красота может быть полезна как путеводная нить, но трудно себе представить, что ее достаточно для выбора единственной теории из бесконечного множества возможностей. Говоря словами физика Макса Тегмарка, "почему одна, и только одна, математическая структура должна быть наделена физическим существованием?" Тегмарк, работающий ныне в Массачусетсом технологическом институте, предложил путь для выхода из этого тупика.[176] Его предложение столь же простое, сколь и радикальное: он отстаивает идею, что для любой и каждой математической структуры должна существовать отвечающая ей вселенная.[177] Существует, например, ньютоновская вселенная, подчиняющаяся законам евклидовой геометрии, классической механики и теории гравитации Ньютона. Есть также вселенные, в которых пространство имеет бесконечное число измерений, и другие — с двумя измерениями времени. Еще труднее представить себе вселенную, управляемую алгеброй кватернионов, не имеющую ни пространства, ни времени. Тегмарк утверждает, что все эти вселенные существуют "где-то". Мы не знаем о них точно так же, как не знаем о других вселенных, зарождающихся из ничего. Математические структуры в некоторых из этих вселенных достаточно изощренны, чтобы допустить возникновение "самосознающих подструктур", подобных вам и мне. Такие вселенные редки, но, конечно, только они могут быть наблюдаемы. У нас нет фактов в поддержку столь радикального расширения реальности. Единственная причина повышать статус вселенных с другими математическими структурами до реального существования — это обход необходимости объяснять, почему они не существуют. Возможно, это удовлетворило бы некоторых философов, но физикам нужно что-то более существенное. В духе принципа заурядности можно было бы попробовать показать, что фундаментальная теория нашей Вселенной — в некотором роде типичная среди всех теорий, достаточно богатых, чтобы содержать наблюдателей. Это могло бы поддержать расширенный мультиверс Тегмарка. В случае успеха эта программа полностью вывела бы Творца за рамки картины мира. Инфляция оставляет ему лишь работу по заданию начальных условий в момент Большого взрыва, квантовая космология снимаете него бремя создания пространства, времени и запуска инфляции, а теперь его изгоняют и из последнего прибежища — выбора фундаментальной теории. Предложение Тегмарка сталкивается, однако, с очень серьезной проблемой. Число математических структур увеличивается с ростом сложности, а значит, "типичная" структура должна ужасать своей тяжеловесностью и громоздкостью. Очевидно, это противоречит простоте и красоте теорий, описывающих мир. Так что непосредственной угрозы безопасности Творца, похоже, пока нет.[178] Мир многих миров На протяжении веков философы и теологи пытались обосновать, что Вселенная конечна или бесконечна, неизменна или развивается, вечна или преходяща. Может показаться, что все возможные ответы на эти вопросы уже рассмотрены. Однако никто не предвосхитил картину мира, родившуюся из последних достижений космологии. Вместо выбора между противоречащими друг другу вариантами она допускает, что в каждом из них есть некоторая доля правды. В центре новой системы мира лежит картина вечной инфляционно расширяющейся Вселенной. Она состоит из изолированных "островных вселенных", где инфляция закончилась, окруженных инфляционным морем ложного вакуума. Границы этих постинфляционных островов быстро расширяются, но разделяющие их расстояния растут еще быстрее. Так что всегда есть место для образования новых островных вселенных, и их число безгранично увеличивается. При взгляде изнутри каждый остров представляется самодостаточной бесконечной вселенной. Мы живем в одной из таких островных вселенных, и наблюдаемая нами область — лишь один из бесконечного числа содержащихся в ней О-регионов. Можно фантазировать на тему того, как спустя миллиарды лет наши далекие потомки будут путешествовать в другие О-регионы, однако добраться в другую островную вселенную невозможно принципиально. Неважно, как долго и насколько быстро мы будем лететь, — мы навсегда связаны с нашей островной вселенной. В целом все вечно инфлирующее пространство-время возникло из крошечной замкнутой вселенной. Она квантово-механически туннелировала из ничего и сразу оказалась ввергнута в никогда не прекращающуюся бешеную инфляцию. Таким образом, Вселенная вечна, но у нее было начало. Инфляция быстро раздула Вселенную до огромного размера, но глобально она всегда остается замкнутой и конечной. Причем из-за особой структуры инфляционного пространства-времени она содержит неограниченное количество бесконечных островных вселенных. Фундаментальные постоянные, определяющие характер нашего мира, получают различные значения в разных островных вселенных. Большинство из этих вселенных кардинально отличаются от нашей, и лишь малая часть из них пригодна для жизни.[179] Наблюдатели каждого такого обитаемого острова обнаружат, что их вселенная развивается от Большого взрыва к большому сжатию. Однако с глобальной точки зрения все типы островов на всех стадиях своей эволюции существуют одновременно. Эта ситуация подобна человеческой популяции на Земле. Каждая личность начинает жизнь ребенком и со временем становится старше, но население в целом в каждый момент включает людей всех возрастов. Хотя общий объем Вселенной растет со временем, часть пространства, занятая каждым типом островов, не меняется. В этом смысле вечно инфлирующая Вселенная является стационарной. Поразительная особенность новой картины мира — это существование за пределами наблюдаемой области множества "других миров". Реальность некоторых из них достаточно несомненна. Мало кто, например, будет сомневаться в реальности других О-регионов, несмотря на то что они недоступны для наблюдения. Имеются косвенные доказательства множественности островных вселенных с различными свойствами. Что же касается других несвязанных пространств-времен, зародившихся из ничего, то нет никаких идей относительно возможности наблюдательной проверки их сущеевования. Картина квантового туннелирования из ничего наводит на другой интригующий вопрос. Процесс туннелирования управляется теми же фундаментальными законами, которые описывают последующую эволюцию Вселенной. Следовательно, законы должны быть "на месте" еще до того, как возникнет сама Вселенная. Означает ли это, что законы — не просто описания реальности, а сами по себе имеют независимое существование? В отсутствие пространства, времени и материи на каких скрижалях могут быть они записаны? Законы выражаются в форме математических уравнений. Если носитель математики — это ум, означает ли это, что ум должен предшествовать Вселенной? Эти вопросы ведут нас вглубь непознанного, в самую бездну величайшей из тайн. Трудно представить себе, что когда-либо мы сможем ее раскрыть. Но, как и прежде, возможно, это просто свидетельствует об ограниченности нашего воображения. Примечания:1 А.Х. Гут, Инфляционная Вселенная, Addison-Wesley, Reading, 1997, p. 2 14 Больцман установил связь между энтропией и беспорядком, прояснив тем самым смысл второго начала термодинамики. 15 Идея больцмановских флуктуации — это, возможно, первый пример того, что позже стали называть антропной аргументацией (см. главу 13). 16 Первое убедительное свидетельство галактической эволюции было представлено в 1950-х годах кембриджским астрономом Мартином Райлом (Martin Ryle). Он обнаружил, что несколько миллиардов лет назад мощное радиоизлучение встречалось у галактик гораздо чаще, чем ныне. 17 Артур Конан Дойл, "Знак четырех", пер. М. Литвиновой. 144 Интересные параллели между древними мифами и современной космологией обсуждаются в книге Марчело Глизера "Танцующая Вселенная: от мифов о творении до Большого взрыва" (Marcelo Gleiser, The Dancing Universe: From Creation Myths to the Big Bang, Dutton, New York, 1997). 145 Эта же критика применима к идее Вселенной, рождающейся из хаоса, как в модели хаотической инфляции. Этот момент обыгрывается в "шутке", приводимой в книге Тимоти Ферриса "Целая история" (Timothy Ferris, The Whole Shebang, Simon & Schuster, New York, 1997). Атеист заявляет, что мир появился из хаоса, на что верующий отвечает: "Но кто же навел этот хаос?" 146 Для реализации этого сценария Стейнхардт и Турок ввели скалярное поле с тщательно подобранным энергетическим ландшафтом. Космологи обычно скептически относятся к их модели, поскольку этот ландшафт выглядит довольно искусственно. Кроме того, значение плотности энергии вакуума, которое играет ключевую роль в этой модели, просто устанавливается "руками" без всякого объяснения, почему оно столь мало или почему оно доминирует во Вселенной в эпоху формирования галактик. 147 Минимальный радиус деситтеровской сферы примерно равен расстоянию, которое проходит свет за один период инфляционного удвоения. 148 Существование такого класса наблюдателей может считаться определением расширяющейся вселенной. 149 Этот метод доказательства неполноты пространства-времени путем демонстрации того, что определенные истории имеют конечную длительность в прошлом или будущем, восходит к работам Хокинга и Пенроуза 1960-70-х годов. 150 Один из способов обойти вывод данной теоремы — допустить, что по мере движения назад во времени темп расширения все замедляется и замедляется и в бесконечном прошлом вселенная становится статической. Но тогда вселенная должна была бы оставаться статической в течение бесконечного времени и достигла бы термодинамического равновесия. 151 Другая интересная попытка избавиться от начала Вселенной предпринята в 1998 году в статье принстонских ученых Дж. Ричарда Готта и Ли-Синь Ли "Может ли Вселенная создать саму себя?" С- Richard Gott, Li-Xin Li, "Can the universe create, itself?", Physical Review D, vol. 58, p. 023501.) Готт и Ли предположили, что при движении в прошлое мы попадаем во временную петлю, прокручивая снова и снова одни и те же события. Эйнштейновская теория относительности действительно в принципе допускает существование временных петель. (Увлекательное обсуждение этого см. в отличной книге Ричарда Готта "Путешествия во времени в эйнштейновской вселенной".) Однако, как отмечают сами Готт и Ли, вдобавок к историям, закрученным в петлю, придуманное ими пространство-время с необходимостью содержит некоторые неполные истории, подобные истории космического путешественника, обсуждаемой в основном тексте. Это означает, что само пространство-время неполно в прошлом, а значит, не обеспечивает удовлетворительной модели для вселенной, не имеющей начала. 152 A. Borde, A.H. Guth, A. Vilenkin, "Inflationary spacetimes are not past complete" ("Инфляционное пространство-время не является полным в прошлом"), Physical Review Letters, vol. 90, p. 151301 (2003). 153 E.A. Milne, Modern Cosmology and the Christian Idea of God ("Современная космология и христианская идея Бога"), Clarendon, Oxford, 1952. 154 Pope Pius XII, Address to the Pontifical Academy of Sciences, November 1951; перевод на англ. в P.J. McLaughlin, The Church and Modern Science ("Церковь и современная наука"), Philosophical Library, New York (1957). He все духовенство разделяло энтузиазм папы. В частности, Жорж Леметр, который был одновременно католическим священником и знаменитым космологом, считал, что религия должна ограничиться духовным миром, оставив материальный науке. Леметр даже пытался отговорить папу от одобрения Большого взрыва. Похоже, что позднее папа изменил свое мнение. Ни он сам, ни его последователи больше не предпринимали попыток прямой научной верификации религии. 155 A. Vilenkin, "Creation of universes from nothing" ("Создание вселенных из ничего"), Physics Letters, vol. 117B, p. 25,1982. Позднее я узнал, что возможность спонтанного зарождения Вселенной из ничего обсуждалась примерно годом раньше Леонидом Грищуком и Яковом Зельдовичем в Московском государственном университете. Однако они не предложили никакого математического описания процесса зарождения. 156 Примерно в то же время идею, очень похожую на трайоновскую, высказал Петр Фомин из Харьковского государственного университета на Украине. Фактически последовательность шагов, показанная на рис. 17.3, не была четко изложена Трайоном и впервые появилась именно в статье Фомина. К сожалению, Фомин не смог найти журнал, который опубликовал бы его работу. В итоге он напечатал ее в малоизвестном украинском физическом журнале. 157 Е.P. Tryon, "Is the universe a vacuum fluctuation?" ("Является ли Вселенная вакуумной флуктуацией?"), Nature, vol. 246, p. 396,1973. В конце 1970-х и начале 1980-х было предпринято несколько попыток разработки математических моделей квантового творения из вакуума. Ричард Броут (Richard Brout), Франсуа Энглер (Francois Englert) и Эдгар Гунциг (Edgard Gunzig) из Брюссельского университета предположили в 1978 году, что в вакууме может спонтанно возникнуть сверхтяжелая частица с массой в 1020 раз больше, чем у протона. Такая частица искривила бы пространство, растущая кривизна запустила дальнейшее рождение частиц, и процесс стал бы распространяться все дальше и дальше, как расширяющийся пузырь. Внутри пузыря тяжелые частицы будут быстро распадаться на более легкие и излучение, заполняя материей расширяющуюся вселенную. Эта модель сталкивается с той же проблемой, что и сценарий Трайона: в действительности она не объясняет происхождение Вселенной. Если пустое плоское пространство действительно настолько неустойчиво, оно быстро заполнилось бы растущими пузырями. Такое нестабильное пространство не могло бы существовать вечно, а значит, не могло бы служить начальной точкой творения. 158 Дэвид Аткац (David Atkatz) и Хайнц Пейджелс (Heinz Pagels) из Рокфеллеровского университета в статье, написанной в 1982 году, предположили, что перед Большим взрывом Вселенная существовала в форме своеобразного "космического яйца" — маленького сферического пространства, заполненного необычной высокоэнергичной материей. Они построили модель, в которой "яйцо" было классически стабильным, но могло туннелировать в состояние с большим радиусом и расшириться. (Насколько я знаю, это было первое упоминание о квантовом туннелировании вселенной как целого.) И вновь проблема в том, что нестабильное "яйцо" не могло существовать вечно, следовательно, оставалась проблема, откуда оно взялось. 159 А.Н. Guth, The Inflationary Universe ("Инфляционная Вселенная"), Addison-Wesley, Reading, 1997, p. 273. 160 St. Augustine, Confessions (Святой Августин, "Исповедь"), Sheed and Ward, NY, 1948. 161 A. Vilenkin, "Quantum origin of the universe" ("Квантовое происхождение Вселенной"), Nuclear Physics, vol. B252, p. 141,1985. 162 Я благодарен Эрнану Макмаллину (Ernan McMullin) который обратил мое внимание на важность требования, что вселенные ансамбля должны существовать реально, а не быть только возможными вселенными. 163 J.В. Hartle, S.W. Hawking, "The wave function of the universe" ("Волновая функция Вселенной"), Physical Review, vol. D28, p. 2960,1983. Хокинг наметил основную идею этой работы примерно годом раньше в сб. "Астрофизическая космология: доклады недели космологии и фундаментальной физики" (Astrophysical Cosmology: Proceedings of the Study Week on Cosmology and Fundamental Physics, edited by H.A. Bruck, G.V. Coyne, and M.S. Longair, Pontifica Academia, Vatican, 1982), но тогда он не раскрыл никаких математических подробностей. 164 Точнее, путем суммирования вкладов различных историй определяется величина, называемая волновой функцией. Вероятность данного состояния равна квадрату волновой функции. 165 Познакомиться с предположением об отсутствии границ можно в бестселлере Хокинга "Краткая история времени", Амфора, 2003. (Hawking S., A Brief History of Time, Bantam, New York, 1988, p. 136). (О современном состоянии этих идей рассказывается в новой научно-популярной книге Хокинга "Мир в ореховой скорлупке", Амфора, 2007. — Примеч. перев.). 166 Ошибку в моей первоначальной статье независимо заметили и исправили Андрей Линде, Валерий Рубаков, а также Яков Зельдович с Алексеем Старобинским. 167 На следующий день у Хокинга было другое важное дело: он поехал в Голливуд, чтобы записать свой электронный голос для специального эпизода сериала "Симпсоны". 168 Следует сделать оговорку, что ландшафт теории струн состоит из нескольких не связанных доменов и пузыри из одного домена не могут зарождаться в другом. В таком случае пузыри, возникающие в ходе бесконечной инфляции, будут содержать только вакуумы, принадлежащие тому же домену, что и первоначальный вакуум, заполнявший вселенную в момент ее возникновения. В этом случае природа мультиверса будет зависеть от начального состояния, и проверка квантовой космологии становится принципиально возможной. 169 Физические процессы в отдаленном будущем Вселенной среди про чих анализировали Мартин Рис и Дон Пейдж (Don Page). Популярный обзор дан в книге Пола Дэвиса "Последние три минуты: догадки о конечной судьбе Вселенной" (Paul Davies, The last three minutes: conjectures about the ultimate fate of the universe, Basic Books, New York, 1994) 170 Этот сценарий основан на анализе К. Нейджамайна и А. Лоэба в статье "Будущая эволюция окружающей крупномасштабной структуры во Вселенной с доминирующей космологической постоянной" (Nagamine К., Loeb A., "Future evolution of nearby large-scale structure in a universe dominated by a cosmological constant", New Astronomy, vol. 8, p. 439, 2003). 171 Предсказание о том, что местная область Вселенной подвергнется коллапсу и большому сжатию, сделано в статье "Проверяемые антропные предсказания для темной энергии", написанной мною с Хауме Гарригой ("Testable anthropic predictions for dark energy", Physical Review, vol. D67, p. 043503, 2003). Мы отмечали, однако, что это предсказание вряд ли удастся проверить в обозримое время. 172 Alan L Mackay, A Dictionary of Scientific Quotations ("Словарь научных цитат"). Institute of Physics Publishing, Bristol, 1991. 173 Подобная ситуация, когда бесконечный ансамбль оказывается много проще отдельного члена, очень часто встречается в математике. Рассмотрим, например, множество всех целых чисел: 1, 2, 3, ... Его можно сгенерировать простой компьютерной программой, занимающей всего несколько строк. С другой стороны, число битов, необходимых для записи конкретного большого целого числа, равно количеству цифр в его двоичной записи и может оказаться гораздо больше. 174 P.A.M. Dirac, "The evolution of the physicist's picture of nature" ("Эволюция физической картины мира"), Scientific American, May 1963. 175 Интересную дискуссию о красоте научных теорий можно найти в книге Марис Ливио "Ускоряющаяся Вселенная: бесконечное расширение, космологическая константа и красота космоса" (Mario Livio, The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos, Wiley, New York, 2000). 176 M. Tegmark, "Parallel universes" ("Параллельные вселенные"), Scientific American, May 2003. 177 Тегмарк не делает различии между математическими структурами и вселенными, которые они описывают. Он полагает, что математические уравнения описывают все аспекты физического мира, так что каждый физический объект отвечает определенной сущности платоновского мира математических структур и наоборот. В этом смысле два мира эквивалентны друг другу, и, согласно Тегмарку, наша собственная Вселенная есть математическая структура. 178 Чтобы справиться с этой проблемой, Тегмарк предполагает, что не все математические структуры равноценны; им можно назначить разные "веса". Если веса быстро убывают с нарастанием сложности, то наиболее вероятными могут оказаться простейшие структуры, которые все же способны содержать наблюдателей. Это введение весов может разрешить проблему сложности, но тогда мы встаем перед вопросом: кто определяет веса? Должны ли мы вернуть из изгнания Творца? Или нам следует еще больше расширить ансамбль, чтобы включить все возможные назначения весов? Я даже не уверен, что представление о весах на множестве всех математических структур логически не противоречиво: оно похоже на введение дополнительной математической структуры, но все они, как предполагается, уже включены в рассматриваемое множество. 179 В зависимости от фундаментальной теории константы могут меняться и внутри отдельной островной вселенной. Наша собственная островная вселенная будет тогда по большей части пустынной с редкими обитаемыми анклавами. |
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|