|
||||
|
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида: В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). Метод наименьших квадратов позволяет получить такие оценки параметров ?0 и ?1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) ? минимальна: В процессе минимизации функции (1) неизвестными являются только значения коэффициентов ?0 и ?1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2): . Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=?0+?1xi: Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии ?0 и ?1: где – среднее значение зависимой переменной; – среднее значение независимой переменной; – среднее арифметическое значение произведения зависимой и независимой переменных; – дисперсия независимой переменной; Gcov (x, y) – ковариация между зависимой и независимой переменными. Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом: |
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|