|
||||
|
55. Модели бинарного выбора Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений. Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений В качестве примеров бинарных результативных переменных можно привести: Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом: Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз, полученные с помощью данной модели, будут выходить за пределы интервала [0;+1] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [0;+1]. Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам: 1) 1) F(–?)=0; 2) F(+?)=1; 3) F(x1)>F(x2) при условии, чтоx1> x2. Данным трём свойствам удовлетворяет функция распределения вероятности. Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде: prob(yi=1)=F(?0+?1xi), где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице. В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [0;+1]. Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом: Векторная форма модели бинарного выбора с латентной переменной: В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*: Модель бинарного выбора называется пробит-моделью или пробит-регрессией (probit regression), если она удовлетворяет двум условиям: 1) остатки модели бинарного выбора ?i являются случайными нормально распределёнными величинами; 2) функция распределения вероятностей является нормальной вероятностной функцией. Пробит-регрессия может быть представлена с помощью выражения: NP(yi)=NP(?0+?1x1i+…+?kxki), где NP – это нормальная вероятность (normal probability). Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки ?i подчиняются логистическому закону распределения. Логит-регрессия может быть представлена с помощью выражения: Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1]. Обобщённый вид модели логит-регрессии: Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы). Логит-регрессия относится к классу функций, которые можно привести к линейному виду. Это осуществляется с помощью преобразования, носящего название логистического или логит преобразования, которое можно проиллюстрировать на примере преобразования обычной вероятности р: Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле: Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным. |
|
||
Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное |
||||
|